Pure Maths 1

Integration
Revision
SP-20 M-20 S-20 M-19 S-19 W-19

Suresh Goel
(Former Director)
Alliance World School
Noida, Delhi-NCR
INDIA.
Example 1: A curve has equation \(y = f(x) \). It is given that \(f'(x) = \frac{1}{\sqrt{x+6}} + \frac{6}{x^2} \) and that \(f(3) = 1 \), find \(f(x) \).

Solution:
\[
\begin{align*}
 f'(x) &= (x+6)^{-\frac{1}{2}} + 6x^{-2} \\
 f(x) &= \int [(x+6)^{-\frac{1}{2}} + 6x^{-2}] \, dx \\
 f(x) &= 2(x+6)^{\frac{1}{2}} - \frac{6}{x} + C
\end{align*}
\]

Given \(f(3) = 1 \)

\[
1 = 2(3+6)^{\frac{1}{2}} - \frac{6}{3} + C
\]

\[
\Rightarrow C = -3
\]

\[
f(0) = f(x) = 2(x+6)^{\frac{1}{2}} - \frac{6}{x} - 3
\]

Example 2: The diagram shows the curve with equation \(y = x(x-2)^2 \). The minimum point on the curve has coordinate \((a,0)\) and the x-coordinate of its maximum is \(b\), where \(a\) and \(b\) are constants.

(a) state the value of \(a \).

(b) Calculate the value of \(b \).

(c) Find the area of the shaded region.

(d) The gradient, \(\frac{dy}{dx} \), of the curve has a minimum value when \(x = \) _, calculate the value of \(m \).

Solution:
\[
y = x(x-2)^2
\]

(a) \((0,0) \) lies on \(\Rightarrow 0 = a(a-2)^2 \Rightarrow a = 2 \)

(b) \(y = x^3 - 4x^2 + 4x \\
\frac{dy}{dx} = 3x^2 - 8x + 4 \\
(3x-2)(x-2) = 0 \) for stationary point \(\Rightarrow x = 2, \frac{2}{3} \)

\[b = \frac{2}{3} \sqrt{3} \]

(c) \(\text{Area} = \int_0^a y \, dx = \int_{\frac{3}{2}}^2 (x^3 - 4x^2 + 4x) \, dx \\
= \left[\frac{x^4}{4} - \frac{4x^3}{3} + 2x^2 \right]_0^2 \\
= \frac{4}{3} - \frac{32}{3} + 8 = \frac{4}{3} \]

(d) Gradient \(g = \frac{dy}{dx} = 3x^2 - 8x + 4 \\
\frac{dg}{dx} = 6x-8 \\
\text{for gradient } \frac{dy}{dx} \text{ to be minimum, } \\
\frac{dg}{dx} = 0 \Rightarrow 6x-8 = 0 \Rightarrow x = \frac{4}{3} \)

(e) Min. value of \(\frac{dy}{dx} \) is \(m = \frac{4}{3} \)
Example 3: The diagram shows part of the curve $y = x^2 + 1$. The shaded region enclosed by the curve, the y-axis, and the line $y = 5$ is rotated through 360° about the y-axis. Find the volume obtained.

Solution: $y = x^2 + 1 \Rightarrow x^2 = y - 1$.

\[
V = \pi \int x^2 \, dy = \pi \int_1^5 (y - 1) \, dy
\]

\[
= \pi \left[\frac{y^2}{2} - y \right]_1^5
\]

\[
= \pi \left[\left(\frac{25}{2} - 5 \right) - \left(\frac{1}{2} - 1 \right) \right]
\]

\[
V = \frac{8\pi}{3}
\]

Example 4: The gradient of a curve at the point (x, y) is given by

\[
dy = 2(a+3)^{1/2} - x.
\]

The curve has a stationary point at $(a, 14)$, where a is a positive constant. Find the equation of the curve.

Solution: $\frac{dy}{dx} = 2(a+3)^{1/2} - x \Rightarrow 0$

For stationary point $\frac{dy}{dx} = 0$

\[
2(a+3)^{1/2} - a = 0
\]

\[
= 2(a+3)^{1/2} = a
\]

\[
4(a+3) = a^2
\]

\[
a^2 - 4a - 12 = 0
\]

\[
(a-6)(a+2) = 0
\]

\[
a = 6 \quad \text{or} \quad a = -2
\]

\[
\therefore \quad a = 6 \quad \text{as} \quad a > 0
\]

Stationary point is $(6, 14)$ on the curve.

\[
y = \int (2(a+3)^{1/2} - x) \, dx
\]

\[
y = 2(a+3)^{3/2} - \frac{x^2}{2} + c
\]

\[
y = \frac{4}{3} (a+3)^{3/2} - \frac{x^2}{2} + c
\]

\[
\Rightarrow 14 = \frac{4}{3} (a+3)^{3/2} - \frac{6^2}{2} + c
\]

\[
14 = \frac{4}{3} \times 27 - 18 + c
\]

\[
\Rightarrow c = -4
\]

\[
\text{From (2) equ. of the curve is}
\]

\[
y = \frac{4}{3} (a+3)^{3/2} - \frac{2^2}{2} - 4
\]
Example 5: The diagram shows part of the curve \(y = \frac{8}{x+2} \) and the line \(2y + x = 8 \), intersecting at points A and B. The point C lies on the curve and the tangent to the curve at C is parallel to AB.

(a) Find, by calculation, the coordinates of A, B and C.

(b) Find the volume generated when the shaded region, bounded by the curve and the line, is rotated through 360° about the x-axis.

Solution: \(y = \frac{8}{x+2} \)

\[
\begin{align*}
\text{(a)} & \quad \text{line: } 2y + x = 8 \\
& \quad y = \left(\frac{8-x}{2}\right) \quad \text{(2)} \\
& \quad \text{Solving (1) and (2)} \\
& \quad \frac{8}{x+2} = \left(\frac{8-x}{2}\right) \\
& \quad \Rightarrow (x+2)(8-x) = 8 \\
& \quad x^2 - 6x = 0 \\
& \quad x(x-6) = 0 \\
& \quad x = 0 \quad \text{or} \quad x = 6
\end{align*}
\]

\[
\begin{align*}
& \quad \text{Region 1: } y = 4 \quad \text{and} \quad x = 6 \\
& \quad \therefore A(0,4) \quad \text{and} \quad B(6,1) \\
& \quad \text{Gradient of } AB = 1 - 4 = -\frac{3}{6} = -\frac{1}{2} \quad \text{(5)} \\
& \quad \text{Gradient of the tangent at } C, \quad \frac{dy}{dx} = -\frac{1}{2} \quad \text{(6)} \\
& \quad \text{Differentiating: } \frac{dy}{dx} = -\frac{8}{(x+2)^2} = \frac{-1}{2} \quad \text{from (5)} \\
& \quad \Rightarrow (x+2)^2 = 16 \\
& \quad x + 2 = \pm 4 \\
& \quad x = 2 \quad \text{or} \quad x = -6 \\
& \quad \text{Region 2: } y = 2 \\
& \quad C(3,2)
\end{align*}
\]

\[
\begin{align*}
& \quad \text{Volume under the line} \\
& \quad = \pi \int_0^6 \left[4 - \frac{1}{2}x\right]^2 \, dx \\
& \quad = \pi \int_0^6 \left[16 + \frac{1}{2}x^2 - 4x\right] \, dx \\
& \quad = \pi \left[16x + \frac{x^3}{3} - 2x^2\right]_0^6 \\
& \quad = \pi \left[96 - 0\right] = 96\pi \\
& \quad \text{Area under the curve} \\
& \quad = \pi \int_0^6 y^2 \, dx = \pi \int_0^6 \left(\frac{x}{x+2}\right)^2 \, dx \\
& \quad = \pi \left[-\frac{6x}{x+2}\right]_0^6 \\
& \quad = \pi \left[-36 - (-32)\right] \\
& \quad = 2\pi \quad \text{(5)} \\
& \quad \text{Requisite shaded area} \\
& \quad = 96\pi - 2\pi \left[\text{from (5)}\right] \\
& \quad = 94\pi \quad \text{(6)}
\end{align*}
\]
Example 6: The diagram shows part of the curve \(y = \frac{6}{x} \). The points \((1,6)\) and \((3,2)\) lies on the curve. The shaded region is bounded by the curve and the lines \(y = 6 \) and \(x = 1 \).

(a) Find the volume generated when the shaded region is rotated through 360° about the y-axis.

(b) The tangent to the curve at a point \(x \) is parallel to line \(y + 2x = 0 \), show that \(x \) lies on the line \(y = 2x \).

Solution: Volume by rotating the curve about the y-axis.

\[
\text{Volume of Cylinder by rotating the line } x = 1 \quad \pi \int_0^2 (6)^2 \, dy
\]

\[
\pi \int_0^2 36 \, dy = \pi \left[\frac{36}{2} \right]^2
\]

\[
= \pi \left[\frac{-36}{2} \right]^2 = \pi \left[-6 - (-18) \right] = 12\pi
\]

Volume of Cylinder by rotating the line \(x = 1 \)

\[
\pi \int_0^2 (6)^2 \, dy = \pi \int_0^6 \frac{6}{x} \, dx
\]

\[
\pi \int_0^2 \frac{6}{x} \, dx = 4\pi
\]

Required Volume by rotating the shaded region about y-axis

\[
\int_0^2 = 12\pi - 4\pi = 8\pi
\]

(b) \(x = \frac{6}{y} \) or \(y = \frac{6}{x} \)

Gradient of the line \(y = -2 \) --

Gradient of tangent to the curve \(\frac{dy}{dx} = \frac{-6}{x^2} \)

Curve is \(y = \frac{6}{x} \)

\[
\frac{dy}{dx} = \frac{-6}{x^2}
\]

\[
\frac{-6}{x^2} = -2
\]

\[
x = \sqrt{3}
\]

\[
\{ x = \sqrt{3}, y = \sqrt{3} \}
\]

\[
(\sqrt{3}, 2\sqrt{3}) \text{ lies on } y = 2x
\]
Example 7: The equation of a curve is such that \(\frac{dy}{dx} = 3x^{3/2} - 3x^{1/2} \),

It is given that the point \((4, 7)\) lies on the curve. Find the equation of the curve.

Solution:

\[
\frac{dy}{dx} = 3x^{3/2} - 3x^{1/2} \\
\Rightarrow y = \int \left(3x^{3/2} - 3x^{1/2}\right) \, dx \\
= 3x^{3/2} - 3x^{1/2} + c
\]

or \(y = 2x^{3/2} - 6x^{1/2} + c \quad (1) \)

Given \((4, 7)\) lies on the curve \(\Rightarrow 7 = 2(4)^{3/2} - 6(4)^{1/2} + c \)

\(\Rightarrow 7 = 16 - 12 + c \Rightarrow c = 3 \)

\(\therefore \) from \((1) \), Eq. equ of curve: \(y = 2x^{3/2} - 6x^{1/2} + 3 \)

Example 8: The diagram shows part of the curve with equation \(y = x^3 - 2bx^2 + b^2x \) and the line \(OA \), where \(A \) is the maximum point on the curve. The \(x \)-coordinate of \(A \) is \(a \) and the curve has a minimum point at \((b, 0)\), where \(a \) and \(b \) are positive constants.

(a) Show that \(b = 3a \)

(b) Show that the area of the shaded region between the line and the curve is \(ka^4 \), where \(k \) is a fraction to be found.

Solution:

(a) has been done in differentiation revision; \(b = 3a \).

(b) Shaded region area = area under the curve - area under the line - \(\square \)

Area under the curve:

\[
\int_{0}^{a} \left(x^3 - 2bx^2 + b^2x\right) \, dx
\]

\[
A = \left[\frac{x^4}{4} - \frac{2bx^3}{3} + \frac{b^2x^2}{2}\right]_{0}^{a}
\]

\[
= \left(\frac{a^4}{4} - \frac{2baa^2}{3} + \frac{b^2a^2}{2}\right) - 0
\]

\[
= \frac{1}{4} a^4 - \frac{2}{3} ba^2 + \frac{1}{2} b^2 a^2
\]

Now at \(x = a \), \(y = a^3 - 6a^2 + 9a^3 = 4a^3 \)

Area under the curve at \((a, 4a^3) \):

\[
A(a, 4a^3) = \frac{1}{4} a^4 - \frac{2}{3} ba^2 + \frac{1}{2} b^2 a^2
\]

Area under the line \(OA \) (AP):

\[
\frac{1}{2} x \times AP
\]

\[
= \frac{1}{2} a \times 4a^3
\]

\[
= 2a^4
\]

Area of the shaded region:

\[
= \frac{1}{4} a^4 - \frac{2}{3} ba^2 + \frac{1}{2} b^2 a^2 - 2a^4
\]

\[
= \frac{1}{4} a^4 - \frac{2}{3} ba^2 + \frac{1}{2} b^2 a^2 - 2a^4
\]

\[
= \frac{3}{4} a^4
\]
Example 9: A curve has equation \(y = f(x) \), passes through the points (0, 2) and (3, -1). It is given that \(f'(x) = kx^2 - 2x \), where \(k \) is a constant. Find the value of \(k \). ---[5]

Solution:
\[f'(x) = kx^2 - 2x \Rightarrow f(x) = \int (kx^2 - 2x) \, dx \]
\[\Rightarrow y = k \frac{x^3}{3} - x^2 + c \quad - \mathbb{D} \]

(0, 2) lies on \(D \Rightarrow 2 = c \); and (3, -1) also lies on \(D \)

\[\Rightarrow -1 = 9k - 9 + a \quad [; c = 2] \]

\[\Rightarrow k = \frac{a}{9} \Rightarrow k = \frac{3}{2} \checkmark \]

Example 10: The diagram shows part of the curve with equation \(y = \sqrt{x^3 + x^2} \). The shaded region is bounded by the curve, the x-axis, and the line \(x = 3 \).
Find showing all necessary working, the volume obtained when the shaded region is rotated through \(360^\circ \) about the x-axis.

\[\text{Solution: } V = \pi \int y^2 \, dx = \pi \int_0^3 (x^3 + x^2) \, dx \]

\[= \pi \left[\frac{x^4}{4} + \frac{x^3}{3} \right]_0^3 \]

\[= \pi \left[\left(\frac{81}{4} + \frac{27}{3} \right) - 0 \right] \]

\[= \frac{117\pi}{4} \checkmark \]
Example 11: A curve for which \(\frac{d^2y}{dx^2} = 2x - 5 \), has a stationary point at \((3, 6)\). Find the equation of the curve.

Solution:

\[
\frac{d^2y}{dx^2} = 2x - 5 \implies \frac{dy}{dx} = \int (2x - 5) \, dx
\]

\[
= x^2 - 5x + C = 0 \text{ for stationary point.}
\]

\[
\therefore \left(\frac{dy}{dx}\right)_{(3, 6)} = 9 - 15 + C = 0 \implies C = 6
\]

\[
\therefore \frac{dy}{dx} = x^2 - 5x + 6
\]

Integrate:

\[
y = \int (x^2 - 5x + 6) \, dx = \frac{x^3}{3} - \frac{5x^2}{2} + 6x + d
\]

Curve passes through \((3, 6)\):

\[
6 = \frac{27}{3} - \frac{45}{2} + 18 + d \implies d = \frac{3}{2}
\]

\[
\therefore \text{equation of curve: } y = \frac{x^3}{3} - \frac{5x^2}{2} + 6x + \frac{3}{2}
\]

Example 12: The diagram shows part of the curve \(y = \frac{3}{\sqrt{1 + 4x}} \) and a point \((2, 1)\) lying on the curve. The normal to the curve at \(P\) intersects the \(x\)-axis at \(Q\).

(i) Show that the \(x\)-coordinate of \(Q\) is \(4/9\).

(ii) Find showing all necessary working, the area of the shaded region.

Solution:

\[
y = \frac{3}{\sqrt{1 + 4x}} \quad \text{①}
\]

\[
\frac{dy}{dx} = \frac{3}{2} \cdot \frac{1}{(1+4x)^{3/2}} \cdot 4 = 6(1 + 4x)^{-3/2}
\]

\[
\Rightarrow \left(\frac{dy}{dx}\right)_{x=2} = \frac{-3}{2} \left(9\right)^{-3/2} = \frac{-2}{9}
\]

\[
\therefore \text{gradient of the normal at } P = \frac{2}{3}
\]

Equation of Normal at \(P(2, 1)\):

\[
y - 1 = \frac{2}{3} (x - 2)
\]

For \(y = 0\):

\[
x = \frac{4}{9} \implies Q\left(\frac{4}{9}, 0\right)
\]

Draw \(PR \perp x\)-axis.

Area of the shaded region:

\[
= \text{area under the curve} - \text{area of } \triangle PQR \quad \text{②}
\]

Area under the curve:

\[
\int_{0}^{4/9} \frac{3}{\sqrt{1 + 4x}} \, dx = \left[\frac{3\sqrt{1 + 4x}}{2} \right]_{0}^{4/9}
\]

Area of \(\triangle PQR = \frac{1}{2} \times QR \times PR
\]

Area of the shaded region:

\[
= 3 - \frac{4}{9} = \frac{26}{9}
\]

\[
\therefore \text{Area} = \frac{26}{9}
\]

Scanned with CamScanner
Example 13: A curve is such that \(\frac{dy}{dx} = \frac{x^3 - 4}{x^2} \). The point \(P(2, 9) \) lies on the curve. Find the equation of the curve.

Solution: \(\frac{dy}{dx} = \frac{x^3 - 4}{x^2} \)

Integrate \(y = \int \left(\frac{x^3 - 4}{x^2} \right) \, dx \)

\[y = \frac{x^4}{4} + \frac{4}{x} + C \quad \cdots \, 0 \]

At point \(P(2, 9) \) lies on the curve \(\Rightarrow 9 = \frac{2^4}{4} + \frac{4}{2} + C \Rightarrow C = 3 \)

Equation of the curve: \(y = \frac{x^4}{4} + \frac{4}{x} + 3 \)

Example 14: The diagram shows part of the curve \(y = \sqrt{4x+1} + \frac{9}{\sqrt{4x+1}} \) and the minimum point \(M \).

(i) Find expressions for \(\frac{dy}{dx} \) and \(\frac{dy}{dx} \)

(ii) Find the coordinates of \(M \).

The shaded region is bounded by the curve, the \(y \)-axis and the line through \(M \) parallel to \(x \)-axis.

(iii) Find, showing all necessary working, the area of the shaded region.

Solution: \(y = \sqrt{4x+1} + \frac{9}{\sqrt{4x+1}} \)

\[\frac{dy}{dx} = \frac{1}{2} (4x+1)^{-\frac{1}{2}} + \frac{9}{2} (4x+1)^{-\frac{3}{2}} \]

\[= \frac{2x - 16}{(4x+1)^{\frac{3}{2}}} \quad \cdots \, 2 \]

\[\Rightarrow \text{Area } = \int_0^2 y \, dx - (2 \times 6) \]

\[= \left[\frac{(4x+1)^{\frac{3}{2}} + \frac{9}{2} (4x+1)^{\frac{1}{2}}} {\frac{3}{2}} \right]_0^2 - 12 \]

\[= \left[\left(\frac{3}{2} + \frac{3}{2} \right) - \left(\frac{1}{2} + \frac{3}{2} \right) \right] - 12 \]

\[= \frac{4}{3} - 12 \]

\[= \frac{4}{3} - 12 \]

\[= \frac{1}{3} \]

\[A = \frac{1}{3} \left(\text{or} \ 1.33 \right) \]
Example 15: A curve is such that \(\frac{dy}{dx} = 3x^2 + 2x + b \). The curve has stationary points at \((-1, 2)\) and \((3, k)\). Find the value of the constants \(a, b \) and \(k \).

Solution: \(\frac{dy}{dx} = 3x^2 + 2x + b \) — (1)

Stationary point at \((-1, 2)\) \(\Rightarrow f'(-1) = 3 - a + b = 0 \Rightarrow a + b = 3 \) — (2)

Also at \((3, k)\) \(\Rightarrow f'(3) = 27 + 3a + b = 27 + 3a + b = 27 - a \) — (3)

Solve \((2) \) \& \((3) \) \(\Rightarrow a = -6 \) and \(b = -9 \)

Now integrate \(y = \int (3x^2 - 6x - 9) \, dx \): \(\therefore a = -6 \)

Equation for the curve \(y = x^3 - 3x^2 - 9x + C \) — (4)

Now point \((-1, 2)\) lies on the curve \(\Rightarrow 2 = -1 - 3 + 9 + C \Rightarrow C = -3 \)

But \(C = -3 \) from (3) \(y = x^3 - 3x^2 - 9x - 3 \) — (5)

Now point \((3, k)\) lies on it \(\Rightarrow k = 27 - 27 - 27 - 3 \Rightarrow k = -30 \)

Example 16: The diagram shows part of the curve \(y = (3x + 4)^2 \) and the tangent to the curve at the point \(A \). The \(x \)-coordinate of \(A \) is 4.

(i) Find the equation of the tangent to the curve at \(A \).

(ii) Find the area of the shaded region.

Solution: \(y = (3x + 4)^2 \) — (1)

(i) \(\frac{dy}{dx} = \frac{1}{2} (3x + 4)^1 \cdot 3 = \frac{3}{2} (3x + 4) \) — (2)

\(\frac{dy}{dx} = \frac{3}{2} \) \(\Rightarrow \) gradient

\(\therefore \) Equation of tangent at \((4, y)\)

\(y - y = \frac{3}{2} (x - 4) \)

\(\therefore \) Gradient

\(\therefore \) Tangent intersects \(y \)-axis at \(\frac{2}{3} \)

\(\therefore \) From \((3) \) \(x = 0 \Rightarrow y = \frac{5}{2} \) V

(ii) Area of the shaded region.

= Area Under the Tangent

= Area Under the Curve

Area Under the Tangent

\[\int (3x + 4)^2 \, dx = \left[\frac{1}{3} (3x + 4)^3 \right]_4 \]

\[= \frac{288 - 16}{9} = 12 \]

= Shaded Area = \(13 - \frac{125}{9} \)

= \(\frac{5}{9} \) (or \(0.556 \))
Example 17: An increasing function, f, is defined for $x > n$, where n is an integer. It is given that $f'(x) = x^2 - 6x + 8$. Find the least possible value of n.

Solution: for increasing $f'(x) > 0 \Rightarrow x^2 - 6x + 8 > 0 \quad (x-2)(x-4) \geq 0$

\[
\begin{array}{c|c}
2 & 4 \\
\hline
2 & 4 \\
\end{array}
\]

\[\therefore \text{least value of } n = 4\sqrt{\]

Example 18: A curve for which $\frac{dy}{dx} = (5x-1)^{\frac{1}{2}} - 2$ passes through the point $(2, 3)$.

(i) Find the equation of the curve.

(ii) Find $\frac{d^2y}{dx^2}$.

(iii) Find the coordinates of the stationary point on the curve and, showing all necessary working, determine the nature of this stationary point.

Solution:

\[
\frac{dy}{dx} = (5x-1)^{\frac{1}{2}} - 2 = 0
\]

\[
\text{from } 0 \rightarrow (5x-1)^{\frac{1}{2}} - 2 = 0
\]

\[
5x-1 = 4
\]

\[
x = 1
\]

\[
\begin{align*}
\text{from } (2, 3) & \Rightarrow \\
3 & = \frac{2}{5} \cdot 2^2 - 4 + c \Rightarrow c = \frac{17}{5}
\end{align*}
\]

\[
\begin{align*}
\text{from III} & \Rightarrow y = \frac{16}{15} - \frac{9}{5} + \frac{17}{5} = \frac{37}{15}
\end{align*}
\]

\[
\begin{align*}
\text{Stationary point } (1, \frac{37}{15})
\end{align*}
\]

\[
\begin{align*}
\text{(i) Integration: } y & = \int (5x-1)^{\frac{1}{2}} - 2 dx \\
& = (5x-1)^{\frac{3}{2}} - 2x + c
\end{align*}
\]

\[
\begin{align*}
\text{from } 0 & \rightarrow (5x-1)^{\frac{3}{2}} - 2x + c = \frac{17}{5}
\end{align*}
\]

\[
\begin{align*}
\text{from III} & \Rightarrow y = \frac{16}{15} - \frac{9}{5} + \frac{17}{5} = \frac{37}{15}
\end{align*}
\]

\[
\begin{align*}
\text{Stationary point } (1, \frac{37}{15})
\end{align*}
\]

\[
\begin{align*}
\text{(ii) Supp } 0 & \frac{d^2y}{dx^2} = \frac{1}{2} (5x-1)^{-\frac{1}{2}} x \\
& = \frac{5}{2} (5x-1)^{-\frac{1}{2}} \quad (d^2y)_{x=1} = \frac{5}{2} \cdot \frac{1}{2} = \frac{5}{4} > 0
\end{align*}
\]

\[
\therefore \text{Minimum at } (1, \frac{37}{15})
\]
Example 19: The diagram shows a shaded region bounded by the y-axis, the line \(y = -1 \) and the part of the curve \(y = x^2 + 4x + 3 \) for which \(x > -2 \).

(i) Express \(y = x^2 + 4x + 3 \) in the form \(y = (x+a)^2 + b \), where \(a \) and \(b \) are constants. Hence, for \(x > -2 \), express \(x \) in terms of \(y \). \(-[4]\)

(ii) Hence, showing all necessary working, find the volume obtained when the shaded region is rotated through 360° about the y-axis. \([6]\)

Solution: \(y = x^2 + 4x + 3 \)

(i) \[
y = (x+2)^2 - 1 \tag{1}
\]

Now \((x+2)^2 = y+1 \)

\[
x + 2 = \pm \sqrt{y+1} \sqrt{y+1} \text{ for } x \geq -2
\]

(ii) \[
x^2 = \left[-2 + (y+1)^{\frac{1}{2}}\right]^2
\]

\[
= 4 + (y+1) - 4 \left(y+1\right)^{\frac{1}{2}}
\]

\[
V = \pi \int_{-1}^{3} x^2 \, dy
\]

\[
= \pi \int_{-1}^{3} (5y+y^2-4(y+1)^{\frac{3}{2}}) \, dy
\]

\[
= \pi \left[5y + \frac{y^2}{3} - 4(y+1)^{\frac{3}{2}} \right]_{-1}^{3}
\]

\[
= \pi \left[5\cdot3 + \frac{9}{3} - \left(-5 + \frac{1}{3}\right) \right] - \pi \left[5\cdot(-1) + \frac{1}{3} - \left(-5 + \frac{1}{3}\right) \right]
\]

\[
= 8\pi \left(\text{or } 8.38 \right) \checkmark
Example 20: A curve is such that \(\frac{dy}{dx} = \frac{k}{\sqrt{x}} \) where \(k \) is a constant. The points \(P(1, -1) \) and \(Q(4, 4) \) lie on the curve. Find the equation of the curve.

Solution: \(\frac{dy}{dx} = k \sqrt{x} \) \(\quad (1) \)

Integrate \(y = \int k \sqrt{x} \, dx \)
\[= \frac{kx^{\frac{3}{2}}}{\frac{3}{2}} + C \]

or \(y = 2k \sqrt{x} + C \) \(\quad (2) \)

(1) \(P(1, -1) \) lies on \(y \) \[-1 = 2k + C \] \(\quad (3) \)

(1) \(Q(4, 4) \) lies on \(y \) \[4 = 4k + C \] \(\quad (4) \)

Solving (3) \(\Rightarrow k = \frac{1}{2}, C = \frac{1}{2} \)

Hence from (2) \(\text{equation of curve } y = 2 \times \frac{1}{2} \sqrt{x} - \frac{1}{2} \Rightarrow y = 5 \sqrt{x} - 6 \)

Example 21: The diagram shows part of the curve \(y = 1 - \frac{4}{(2x+1)^2} \).

The curve intersects the \(x \)-axis at \(A \). The normal to the curve at \(A \) intersects the \(y \)-axis at \(B \).

(i) Obtain expressions for \(\frac{dy}{dx} \) and \(\int y \, dx \) \(\quad ([4]) \)

(ii) Find the coordinates of \(B \) \(\quad ([4]) \)

(iii) Find the area of the shaded region \(\quad ([4]) \)

Solution: \(y = 1 - \frac{4}{(2x+1)^2} \) \(\quad (1) \)

(i) \(\frac{dy}{dx} = \frac{2 \times (-4)}{(2x+1)^3} \times (2x+1) \)
\[= \frac{-4}{(2x+1)^3} \]

\[\int y \, dx = \int \left(1 - \frac{4}{(2x+1)^2}\right) \, dx \]
\[= x + 2(2x+1)^{-1} + C \] \(\quad (3) \)

(ii) At \(A, y = 0 \) \[\Rightarrow x = \frac{1}{2}, A \left(\frac{1}{2}, y\right) \]

from (3) \(\frac{dy}{dx} x = \frac{1}{2} \Rightarrow \text{Gradient of Normal} = -\frac{1}{2} \)

Equation of Normal at \(A \left(\frac{1}{2}, y\right) \)
\[y - 0 = -\frac{1}{2} \left(x - \frac{1}{2}\right) \]

Intersect \(y \)-axis, put \(x = 0 \)
\[y = \frac{1}{4} \]

\(B \left(0, \frac{1}{4}\right) \)

Area of shaded area = area of \(\triangle AOB \)

Area between curve and \(x \)-axis:
\[A_1 = \int_0^{1/2} \left(1 - \frac{4}{(2x+1)^2}\right) \, dx \]
\[= \left[2x - \frac{2}{2x+1}\right]_0^{1/2} = \frac{1}{2} \]

\([A_1] = \frac{1}{2} \)

Area of \(\triangle AOB = \frac{1}{2} \times \frac{1}{2} \times \frac{1}{4} = \frac{1}{16} \)

Area of shaded region
\[A \triangle AOB = \frac{1}{2} + \frac{1}{16} = \frac{9}{16} \]
Example 22: A function \(f \) is defined for \(x > \frac{1}{2} \) and is such that,
\[
f'(x) = 3(2x-1)^{\frac{1}{2}} - 6.
\]
It is now given that \(f(1) = -3 \). Find \(f(x) \).

Solution:
\[
f'(x) = 3(2x-1)^{\frac{1}{2}} - 6
\]
Integrating,
\[
f(x) = \int (3(2x-1)^{\frac{1}{2}} - 6) \, dx
\]
\[
= 3(2x-1)^{\frac{3}{2}} - 6x + C
\]
\[
\Rightarrow f(x) = (2x-1)^{\frac{3}{2}} - 6x + 2 - C
\]
\[
-3 = 1 - 6 + C \Rightarrow C = 2
\]
\[
\therefore f(x) = (2x-1)^{\frac{3}{2}} - 6x + 2
\]

Example 23: The diagram shows part of the curve \(y = (x-1)^{\frac{3}{2}} + 2 \), and the lines \(x = 1 \) and \(x = 3 \). The point \(A \) on the curve has coordinates \((2,3) \). The normal to the curve at \(A \) crosses the line \(x = 1 \) at \(B \).

(i) Show that the normal \(AB \) has equation \(y = \frac{1}{2} x + 2 \).

(ii) Find the volume of revolution obtained when the shaded region is rotated through \(360^\circ \) about the \(x \)-axis.

Solution:
\[
y = (x-1)^{\frac{3}{2}} + 2
\]
(i)
\[
dy\![x] = 2(x-1)^{-\frac{1}{2}}
\]
\[
\left(\frac{dy}{dx}\right)\!_{x=2} = -2,
\]
\[
\therefore \text{gradient of normal at } A \left(\frac{1}{2}\right).
\]
Equation of normal at \(A(2,3) \):
\[
y - 3 = \frac{1}{2}(x - 2) \Rightarrow y = \frac{1}{2}x + 2
\]
(ii)
\[
V = \text{Volume by revolving line} \left(\begin{array}{c}
\text{at } x = 1
\text{at } x = 3
\end{array} \right)
\]
\[
V_1 = \pi \int_{0}^{1} y^2 \, dx = \pi \int_{0}^{1} \left((x-1)^{\frac{3}{2}} + 2 \right)^2 \, dx
\]
\[
= \pi \int_{0}^{1} \left((x-1)^{\frac{3}{2}} + 4(x-1)^{\frac{1}{2}} + 4 \right) \, dx
\]
\[
= \pi \left[\frac{2}{3} (x-1)^{\frac{5}{2}} - 4(x-1)^{\frac{3}{2}} + 4x \right]_{0}^{1}
\]
\[
= \pi \left[- \frac{1}{3} + 8 - 0 \right]
\]
\[
= \pi \left[-\frac{1}{3} + 8 \right]
\]
\[
V_2 = \pi \left[\frac{15}{2} \right] = \frac{15}{2} \pi
\]

Required Volume:
\[
V = V_1 + V_2 = \frac{91}{12} \pi + \frac{15}{4} \pi = \frac{332}{48} \pi
\]

Scanned with CamScanner