Pure Math 1

Quadratics
Revision

Suresh Goel
(former director)
Alliance World School,
Noida, Delhi NCR,
INDIA.
Example 1: The equation of a line is \(y = mx + c \), where \(m \) and \(c \) are constants, and the equation of a curve is \(xy = 16 \).

(a) Given that the line is a tangent to the curve, express \(m \) in terms of \(c \).

(b) Given instead that \(m = -4 \), find the set of values of \(c \) for which the line intersects the curve at two distinct points.

Solution (a)

\[y = mx + c \quad \text{(1)} \]

Curve: \(xy = 16 \quad \text{(2)} \)

From (1) and (2) \(x(mx + c) = 16 \)

\[\Rightarrow mx^2 + cx - 16 = 0 \quad \text{(3)} \]

For line to be tangent to curve:

\[b^2 - 4ac = 0 \]

\[c^2 - 4 \times m \times (-16) = 0 \]

\[\Rightarrow c^2 + 64m = 0 \]

\[\Rightarrow m = -\frac{c^2}{64} \quad \text{\(\checkmark \)} \]

(b) Now \(y = -4x + c \quad \text{(4)} \) for \(m = -4 \)

\[xy = 16 \quad \text{(2)} \]

\[\Rightarrow x(-4x + c) = 16 \]

\[\Rightarrow -4x^2 + cx - 16 = 0 \]

\[\Rightarrow 4x^2 - cx + 16 = 0 \quad \text{(5)} \]

The line intersects the curve (2) in two different points \(\Rightarrow b^2 - 4ac > 0 \)

From (5) \(\Rightarrow c^2 - 4 \times 4 \times 16 > 0 \)

\[\frac{c^2 - (16)^2}{4} > 0 \]

\[\frac{c^2}{16} > (16)^2 \]

\[\Rightarrow c > 16 \text{ or } c < -16 \]

(\(: x > a^2, a > 0 \) \(\rightarrow \) \(x < -a \) \(\rightarrow \) \(x > a \))
Example: The equation of a curve is \(y = 2x^2 + kx + k - 1 \), where \(k \) is a constant.

(a) Given that the line \(y = 2x + 3 \) is a tangent to the curve, find the value of \(k \).

It is now given that \(k = 2 \).

(b) Express the equation of the curve in the form \(y = a(x+a)^2 + b \), where \(a \) and \(b \) are constants, and state the coordinates of the vertex of the curve.

--- [3]

Solution: Curve: \(y = 2x^2 + kx + k - 1 \)

(a) Line: \(y = 2x + 3 \)

From (a) \(\)
\[2x^2 + kx + k - 1 = 2x + 3 \]
\[\Rightarrow 2x^2 + (k-2)x + (k-4) = 0 \]

From line (a) be tangent to curve (b).

Line should intersect exactly at one point \(k \).

For \(b^2 - 4ac = 0 \)

From (b) \((k-2)^2 - 4 \cdot 2 \cdot (k-4) = 0 \)
\[\Rightarrow k^2 - 12k + 36 = 0 \]
\[\Rightarrow (k-6)^2 = 0 \]
\[\Rightarrow k = 6 \]

(b) Now \(k = 2 \)

From (a) Curve: \(y = 2x^2 + 2x + 1 \)

or \(y = 2 \left[x^2 + x + \frac{1}{2} \right] \)
\[= 2 \left[x^2 + x + \left(\frac{1}{2} \right)^2 - \frac{1}{4} + \frac{1}{2} \right] \]
\[= 2 \left[(x+\frac{1}{2})^2 + \frac{1}{2} \right] \]
\[= 2(x+\frac{1}{2})^2 + \frac{1}{2} \]
\[\therefore \text{Vertex } (-\frac{1}{2}, \frac{1}{2}) \]
Example 3: Find the set of values of m for which the line with equation \(y = mx + 1 \) and the curve with equation \(y = 3x^2 + 2x + 4 \) intersect at two distinct points.

Solution: Line: \(y = mx + 1 \) \(\quad \) (1)
Curve: \(y = 3x^2 + 2x + 4 \) \(\quad \) (2)

To find the point of intersection from (1) and (2)

\[3x^2 + 2x + 4 = mx + 1 \]

or \[3x^2 + (2-m)x + 3 = 0 \] \(\quad \) (3)

from (1) and (2) intersect in two distinct points,

\[b^2 - 4ac > 0 \]

\[(2-m)^2 - 4 \cdot 3 \cdot 3 > 0 \]

\[(2-m)^2 - 36 > 0 \] \(\quad \) (4)

\[(2-m)^2 > 36 \]

\[2-m > 6 \text{ or } 2-m < -6 \]

\[\Rightarrow m < -4 \text{ or } m > 8 \]

Alternate method to solve (4)

\[(x-a)(x-b) > 0 \]

\[(2-m)^2 - 36 > 0 \]

\[m^2 - 4m + 4 - 36 > 0 \]

\[m^2 - 4m - 32 > 0 \]

\[(m-8)(m+4) > 0 \]

roots of eqn: 8, -4

\[m > 8 \quad \text{or} \quad m < -4 \]

Note: \(a > b \)
Example 4: The line $4y = x + c$, where c is a constant, is a tangent to the curve $y^2 = x + 3$ at the point P on the curve.

(i) Find the value of c.
(ii) Find the coordinates of P.

Solution:

(i) Line: $4y = x + c$
Curve: $y^2 = x + 3$
From (i) and (ii) $y^2 = 4y - c + 3$
Or $y^2 - 4y + c - 3 = 0$
For line to be tangent to the curve $b^2 = 4ac = 0$ in (ii)
$$(-4)^2 - 4 \times 1 \times (c-3) = 0$$
$$16 - 4c + 12 = 0 \Rightarrow 4c = 28 \Rightarrow c = 7 \checkmark$$

(ii) Let $c = 7$ in (ii) to find P.
$$y^2 - 4y + (7 - 3) = 0$$
$$y^2 - 4y + 4 = 0$$
$$(y - 2)^2 = 0$$
$$y = 2 \checkmark$$
From (i) $x = 4y - 7 = 1$
$$x = 1$$
$\therefore P(1, 2) \checkmark$
Example 5: The function \(f(x) = x^2 - 4x + 8 \) for \(x \in \mathbb{R} \).

(i) Express \(x^2 - 4x + 8 \) in the form \((x - a)^2 + b\).

\[(i) \quad x^2 - 4x + 8 = (x^2 - 4x + 4) + 4 = (x - 2)^2 + 4 \]

(ii) Hence find the set of values of \(x \) for which \(f(x) < 9 \), giving your answer in exact form.

Solution: \(f(x) = x^2 - 4x + 8 \)

\[(i) \quad x^2 - 4x + 8 = (x^2 - 4x + 4) + 4 = (x - 2)^2 + 4 \]

\[(ii) \quad f(x) < 9 \]

\[\Rightarrow \quad x^2 - 4x + 8 < 9 \]

\[\Rightarrow \quad (x - 2)^2 + 4 < 9 \]

\[\Rightarrow \quad (x - 2)^2 < 5 \]

\[\Rightarrow \quad (x - 2)^2 < (\sqrt{5})^2 \]

\[\Rightarrow \quad \sqrt{5} < x - 2 < \sqrt{5} \]

\[\Rightarrow \quad 2 - \sqrt{5} < x < 2 + \sqrt{5} \]
Example 6: A straight line has gradient \(m \) and passes through the point \((0, -2)\). Find the two values of \(m \) for which the line is tangent to the curve \(y = x^2 - 2x + 7 \) and, for each value of \(m \), find the coordinates of the point where the line touches the curve.

Solution: Equation of line passing through \((0, -2)\) and gradient \(m \),

\[
\text{line: } y = mx - 2 \quad \text{--- 1}
\]

\[
\text{curve: } y = x^2 - 2x + 7 \quad \text{--- 2}
\]

\(\text{From 1 and 2: } x^2 - 2x + 7 = mx - 2\)

\(\Rightarrow x^2 - (2 + m)x + 9 = 0 \quad \text{--- 3}\)

For line 1 to be tangent to the curve 2,"} b^2 - 4ac = 0

\[
(2 + m)^2 - 4 \cdot 1 \cdot 9 = 0
\]

\[
(2 + m)^2 = 36
\]

\(\Rightarrow 2 + m = \pm 6 \Rightarrow m = 4 \text{ or } -8\)

Now for \(m = 4 \), from 3,

\[
x^2 - 6x + 9 = 0
\]

\[
(x - 3)^2 = 0 \Rightarrow x = 3, \quad y = 4 \cdot 3 - 2 \quad \text{Point \((3,10)\)}
\]

Again for \(m = -8 \)

\[
x^2 + 6x + 9 = 0 \Rightarrow (x + 3)^2 = 0 \Rightarrow x = -3
\]

\(\text{From 1 for } m = -8, \quad y = -8 \cdot -3 - 2
\]

\(x = -3 \Rightarrow y = 22 \quad \text{Point \((-3, 22)\)}

\therefore \text{ required points } \((-3, 22) \quad \text{and } \(3, 10)\)
Example 7: Functions f and g are defined by:

\[f(x) = 2x^2 + 8x + 1 \quad \text{for} \quad x \in \mathbb{R} \]
\[g(x) = 2x - k \quad \text{for} \quad x \in \mathbb{R} \]

where k is a constant.

(i) Find the value k for which the line $y = g(x)$ is a tangent to the curve $y = f(x)$.

(ii) In case where $k = -9$, find the set of values of x for which $f(x) < g(x)$.

Solution: line: $y = 2x - k \quad \text{(1)}$

curve $f(x) = 2x^2 + 8x + 1 \quad \text{(2)}$

from (1) \& (2)

\[2x^2 + 8x + 1 = 2x - k \]

\[
\Rightarrow 2x^2 + 6x + (1 + k) = 0 \quad \text{(3)}
\]

For line (1) tangent to curve (2),

For (3) \quad $b^2 - 4ac = 0$

or $6^2 = 4 \times 2(1 + k)$

\[8 + 8k = 36 \Rightarrow 8k = 28 \]

\[k = 3.5 \]

(iii) For $k = -9$

\[f(x) = 2x - (-9) = 2x + 9 \quad \text{(4)}
\]

Now given $f(x) < g(x)$

From (3) \& (4)

\[2x^2 + 8x + 1 < 2x + 9 \]

or $2x^2 + 6x - 8 < 0$

\[x^2 + 3x - 4 < 0 \]

\[(x+4)(x-1) < 0 \]

\[-4 < x < 1 \]

\[\text{for} \quad (x-a)(x-b) < 0 \]

\[b < x < a \]

\[a > b \]

\[b < x < a \]
Example 8: A line has equation \(y = 3kx - 2k \) and a curve has equation \(y = x^2 - kx + 2 \), where \(k \) is a constant.

(i) Find the set of values of \(k \) for which the line and curve meet at two distinct points.

(ii) For each of two particular values of \(k \), the line is a tangent to the curve. Show that these two tangents meet on the \(x \)-axis.

Solution: Line: \(y = 3kx - 2k \) \(\quad \boxed{1} \)

Curve: \(y = x^2 - kx + 2 \) \(\quad \boxed{2} \)

(i) For line intersects the curve from \(\boxed{1, 2} \)

\[x^2 - kx + 2 = 3kx - 2k \]

or \(x^2 - 4kx + 2(2k + 2) = 0 \) \(\boxed{3} \)

for \(\boxed{1} \) and \(\boxed{2} \) intersect at two distinct points, for \(\boxed{3} \), \(b^2 - 4ac > 0 \)

\[(4k)^2 - 4 \cdot 1 \cdot (2k + 2) > 0 \]

\[16k^2 - 8k - 8 > 0 \]

or \(2k^2 - k - 1 > 0 \)

\((2k + 1)(k - 1) > 0 \)

\[\text{Roots of the eqn are } 1, -\frac{1}{2} \]

\(\boxed{2} \), \(\boxed{1} \)

\[k < -\frac{1}{2} \text{ or } k > 1 \]

\(\checkmark \)

(ii) For line \(\boxed{1} \) is tangent to the curve \(\boxed{2} \)

for \(\boxed{3} \), \(b^2 - 4ac = 0 \)

\[16k^2 - 8k - 8 = 0 \]

\[k = 1, -\frac{1}{2} \]

for \(\boxed{1} \), \(\boxed{2} \) not tangents

\(k = 1, \quad y = 3x - 2 \) \(\boxed{4} \)

\(k = -\frac{1}{2}, \quad y = -\frac{3}{2}x + 1 \) \(\boxed{5} \)

solve \(\boxed{4, 5} \) \(\Rightarrow x = \frac{3}{2} \)

\[y = 0 \]

Tangents \(\boxed{4, 5} \) intersect at point \(\left(\frac{3}{2}, 0 \right) \), i.e. on \(x \)-axis.