Pure Maths 3

Complex Numbers
Revision

Sureesh Gael
(former Director)
Alliance World School
Noida, Delhi - NCR
INDIA.
Example 1 (a) The complex numbers \(v \) and \(w \) satisfy the equations:
\[
v + iw = 5 \quad \text{and} \quad (1+2i)v - w = 3i
\]
Solve the equations for \(v \) and \(w \), giving your answers in the form \(x+iy \), where \(x \) and \(y \) are real.

(b) (i) On an Argand diagram, sketch the locus of points representing complex numbers \(z \) satisfying:
\[
|z - 2 - 3i| = 1
\]
(ii) Calculate the least value of \(\arg z \) for the points on the locus.

Solution (a) Solve for \(v \) and \(w \) (use \(i^2 = -1 \))

\[
v = -2i \quad \text{and} \quad w = 5 + 7i
\]

Multiply \(N'v \) and \(Z'v \) by the conjugate of \(v \).

We get:
\[
v = -1 - i \quad \checkmark
\]
and
\[
w = 1 - 6i \quad \checkmark
\]

(b) (i) \(|z - 2 - 3i| = 1 \)
or \(|z - (2+3i)| = 1 \)
represents a circle with center at \((2+3i) \) and \(r = 1 \).

Draw \(OP \) tangent to the circle.

The angle \(\theta = \angle POX = \theta \) is the least.

\[
\theta = \arg(2+3i) - \alpha
\]
\[
= \tan^{-1} \frac{3}{2} - \tan^{-1} \frac{1}{\sqrt{3}}
\]
\[
= 56.3^\circ - 16.4^\circ
\]
\[
= 40.9^\circ \quad \checkmark
\]
Example (ii): The complex number \(u \) is defined by
\[
\frac{3i}{a+2i}
\]
where \(a \) is real.

(a) Express \(u \) in the Cartesian form \((x+i)\), where \(x \) and \(y \) are in terms of \(a \). \(-3\)

(b)(i) Find the exact value of \(a \) for which \(\arg u = \frac{\pi}{3} \). \(-3\)

(b)(ii) On a sketch of an Argand diagram, shade the region whose points represent complex numbers \(z \) satisfying the inequalities \(|z-2i| < |z-1-i| \) and \(|z-2i| < 2 \). \(-4\)

(iii) Calculate the least value of \(\arg z \) for the points in this region. \(-2\)

Solution

(i) Multiply \(N^2 \) and \(Z^3 \) by \((a-2i)\) and use \(i^2 = -1 \)

\[
\frac{u}{(a+4)} = \frac{6}{a+4} - \frac{3ai}{a+4} \Rightarrow \arg u = \tan^{-1}\left(\frac{-3a}{6} \right) = \frac{\pi}{3} \text{ (given)} \]

\[
\Rightarrow -\frac{3a}{6} = \frac{\sqrt{3}}{3} \]

\[
\Rightarrow a = -2\sqrt{3}
\]

(b)(i) \(|z-2i| = |z-(1+i)|\) represent the points joining \(A(2i), B(1+i) \).

and \(|z-(2+i)| = 2 \) represents a circle centred \((2+i)\) and \(r = 2 \).

(ii) Least value of \(\arg z \) in the shaded region at \(P(2+3i) \)

\[
\arg (2+3i) = \tan^{-1}\left(\frac{3}{2} \right) = 56.3^\circ
\]
Example 3 (a) Solve the equation \((1+2i)w + iw^2 = 3+5i\). Give your answer in the form \(x+iy\), where \(x\) and \(y\) are real. \(-[4]\)

(b) i. On a sketch of Argand diagram, shade the region whose points represent complex numbers \(z\) satisfying the inequalities:

\[|z-2-2i|\leq 1 \text{ and } \arg(z-4i)\leq -\frac{\pi}{4}\] \(-[4]\)

ii. Find the least value of \(\text{Im}\,\bar{z}\) for the points in this region, giving your answer in an exact form. \(\frac{5-20\sqrt{2}}{32}\) \((-2\sqrt{2})\)

Solution (a) \((1+2i)(x+iy)+i(x-iy)=3+5i\)

Equate real and imaginary parts; \([u+i^2 = -1]\)

\[x-y = 3 \quad \text{and} \quad 3x+5 = 5\]

Solve for \(x\) and \(y\) and get \(w = (2-i)\)

(b) i. \(|z-(2+2i)|\leq 1\); represents a circle centre \((2+2i)\), \(r=1\)

\((z-4i)\geq -\frac{\pi}{4}\) represents a half-line from \(4i\).

Shade the correct region.

(ii) \(A\) is the point with the least \(\text{Im}\,\bar{z}\). In the shaded area,

Draw \(AM\perp X\)-axis

\[CN\perp X\text{-axis}\]

\[AD \perp CN\]

In \(\triangle CAD\),

\[\frac{CD}{CA} = \frac{\frac{\sqrt{2}}{2}}{1} = \frac{1}{\sqrt{2}} \quad (CA=x=1)\]

\[CD = CA \times \frac{\sqrt{2}}{2} = \frac{x}{\sqrt{2}} = \frac{1}{\sqrt{2}}\]

Now, \(AM = DN = CN - CD\)

\[= 2 - \frac{1}{\sqrt{2}}\]

\[\therefore \text{Im}\,\bar{z} = 2 - \frac{1}{\sqrt{2}} = \left(2 - \frac{1}{2\sqrt{2}}\right)\]
Example 4 (a) Complex numbers \(u \) and \(w \) are such that:
\[
u - w = 2i \quad \text{and} \quad uw = 6
\]
Find \(u \) and \(w \), giving your answers in the form \(x + iy \), where \(x \) and \(y \) are real and exact. \(-[5]\)

(b) On a sketch of an Argand diagram, shade the region whose points represent complex numbers \(z \) satisfying the inequalities:
\[
|z - 2 - 2i| \leq 2, \quad 0 \leq \arg z \leq \frac{1}{4} \pi \quad \text{and} \quad \Re z \leq 3.
\]
\([5-20/33/09]\)

Solution (a) \(u - w = 2i \) and \(uw = 6 \)

Eliminating \(w \), \(\Rightarrow u^2 - 2i \cdot u - 6 = 0 \)

\[
\Rightarrow u = \sqrt{5} + i, \quad w = \sqrt{5} - i
\]

or \(u = -\sqrt{5} + i, \quad w = -\sqrt{5} - i \)

(b) \(|z - (2+2i)| = 2 \), represent a circle, centre \((2,2)\), rad = 2

\(0 \leq \arg z \leq \frac{1}{4} \pi \), show half line from origin at \(45^\circ \) to the positive \(x \)-axis

\(\Re z \leq 3 \) represent a line parallel to \(y \)-axis, through \(x = 3 \)
Example 5 (a) Showing all working and without using a calculator, solve the equation:
\[(1+i)z^2 - (4+3i)z + 5 + i = 0\]
Give your answers in the form \(x+iy\), where \(x\) and \(y\) are real.

(b) The complex number \(u\) is given by:
\[u = -1 - i\]

On a sketch of an Argand diagram show the point representing \(u\). Shade the region whose points represent complex numbers satisfying the inequalities \(|z| < |z-2i|\) and \(\frac{\pi}{2} < \arg(z-u) < \frac{3\pi}{4}\)

Examples (a), using quad. formula,
get the final answers, \((-1 - i), (\frac{5}{2} + \frac{1}{2}i)\)

(b) \(u = -1 - i\) represents point A, \((-1, -1)\)

| \(z - 0| = |z - 2i|\)

represent line \(l\) - perp. bisector.

\(z = i\) \(\text{def. join} z = 0 \& z = 2i\)

\(\arg(z - u) = \frac{\pi}{4}\)

\(\frac{\pi}{2}\)

\(-\frac{\pi}{2}\)

\(0\)

\(z = 0\)

\(z = 2i\)

\(z = i\)

\(z = -1\)

\(z = -i\)

\(u\)

\(A(-1, -1)\)
Example 6: The complex number \(\sqrt{3} + i \) is denoted by \(z \).

(i) Express \(z \) in the form \(r e^{i\theta} \), where \(r > 0 \) and \(-\pi < \theta < \pi\), giving the exact values of \(r \) and \(\theta \). Hence or otherwise state the exact values of the modulus and argument of \(z^4 \). --- [5]

(ii) Verify that \(z \) is a root of the equation \(z^3 - 8z + 8\sqrt{3} = 0 \) and state the other complex root of this equation. --- [3]

(iii) On a sketch of an Argand diagram, shade the region whose points represent complex number \(z \) satisfying the inequalities \(|z - 1| \leq 2 \) and \(\text{Im} z \geq 2 \), where \(\text{Im} z \) denotes the imaginary part of \(z \).

\[
\begin{align*}
(ii) \quad z &= (\sqrt{3} + i) \\
&= 2e^{i\pi/6} \\
&= 2 \left(\cos \frac{\pi}{6} + i \sin \frac{\pi}{6} \right) \\
&= 2 \left(\frac{\sqrt{3}}{2} + i \frac{1}{2} \right) \\
&= \sqrt{3} + i
\end{align*}
\]

Consider \(z^3 - 8z + 8\sqrt{3} = 0 \)

Put \(z = u \), \(u^3 - 8u + 8\sqrt{3} = 0 \)

\(u = \sqrt{3} \)

\(u^3 = 8(\sqrt{3} + i) + 8\sqrt{3} = 0 \)

\(u \) is a root if \(z^3 - 8z + 8\sqrt{3} = 0 \)

Other root will be \(u^4 = \sqrt{3} - i \)

\[
\begin{align*}
(iii) \quad |z - 1| &\leq 2 \\
|2 - (\sqrt{3} + i)| &\leq 2 \\
\text{Circle Centre} (\sqrt{3}, 1), \text{Radii} = 2 \\
\text{Im} z = 2, \text{line parallel to x-axis} \\
\text{Im} z &\geq 2
\end{align*}
\]
Example 7: It is given that the complex number $-1+\sqrt{3}i$ is a root of the equation $kx^3+5x^2+10x+4=0$ where k is a real constant.

(i) Write down another root of the equation.

(ii) Find the value of k and the third root of the equation.

Solution:

(i) Given a root $-1+\sqrt{3}i$, then the other root will be its conjugate, $-1-\sqrt{3}i$.

(ii) Now let $x = -1+\sqrt{3}i \Rightarrow x^2 = (-1+\sqrt{3}i)^2 = 1 - 2\sqrt{3}i$
\[\quad \quad = -2 + 2\sqrt{3}i \checkmark\]

and $x^3 = (-1+\sqrt{3}i)^3 = (-1)^3 + (\sqrt{3}i)^3 + 3(-1)(\sqrt{3}i)^2 + 3(-1)^2 \sqrt{3}i$
\[\quad \quad = -1 - 3\sqrt{3}i + 9 + 3\sqrt{3}i = 8 \checkmark\]

Given $kx^3+5x^2+10x+4=0$ \[\quad \quad \Rightarrow k \times 8 + 5(-2-2\sqrt{3}i)+10(-1+\sqrt{3}i)+4=0\]
\[8k-16=0 \Rightarrow k=2 \checkmark\]

Now $x = (-1+\sqrt{3}i)$ and $x = (-1-\sqrt{3}i)$

$\Rightarrow (x+1-\sqrt{3}i)(x+1+\sqrt{3}i)$ is a factor of eqn. \[\checkmark\]
\[\Rightarrow (x^2+2x+4)$ is a factor of \[\checkmark\]
\[\Rightarrow 2x^3+5x^2+10x+4=0 $ \quad (h=2)$ in eq. \[\checkmark\]
\[\Rightarrow (x^2+2x+4)(2x+1)=0\]
\[\Rightarrow (2x+1)=0\]
\[\Rightarrow x=-\frac{1}{2}$ is the third root.
Example 8: The complex number \(U \) is defined by \(U = \frac{4i}{1-\sqrt{3}i} \).

(i) Express \(U \) in the form \(x + iy \), where \(x \) and \(y \) are real and exact.

(ii) Find the exact modulus and argument of \(U \).

(iii) On a sketch of an Argand diagram, shade the region whose points represent complex numbers \(Z \) satisfying the inequalities \(|Z| < 2 \) and \(|Z-U| < |Z| \).

Solution

(i) \(U = \frac{4i}{1-\sqrt{3}i} \)

\[\frac{4i(1+\sqrt{3}i)}{1+3} = \frac{4i(1+\sqrt{3}i)}{4} \]

\[U = \frac{4}{4}(-\sqrt{3} + i) = -\sqrt{3} + i \sqrt{3} \]

(ii) \(|U| = |-\sqrt{3} + i\sqrt{3}| = \sqrt{3} + i \approx 2 \)

\[\arg U = \tan^{-1}(\sqrt{3}) = \pi - \frac{\pi}{6} = \frac{5\pi}{6} \]

(iii) \[(-\sqrt{3}+i) \]

Note: The points on the boundary of the shaded region are not included.

\(|Z| < 2 \) represents the interior of a circle with centre at origin and rad. 2.

\(|Z-U| < |Z| \) To shade the 0-side of the perpendicular bisector of the segment joining the origin and \(U \).
Example 9(a) The complex number u is given by $u = -3 - 2\sqrt{10}i$. Find the square root of u. Give your answers in the form $(a + ib)$, where the numbers a and b are real and exact.

(b) On a sketch of an Argand diagram shade the region whose points represent complex numbers z satisfying the inequalities $|z - 3 - i| \leq 3$, $\arg z \geq \frac{\pi}{4}$ and $\text{Im} z \geq 2$, where $\text{Im} z$ denotes the imaginary part of the complex number z.

Solution (a) $(a + ib)^2 = -3 - 2\sqrt{10}i$

or $(a^2 - b^2) + 2abi = -3 - 2\sqrt{10}i$

Equalise real and imaginary parts

$(a^2 - b^2) = -3$ --- (1)

$2ab = -2\sqrt{10}$ --- (2)

Tabling modulus on both sides

$a^2 + b^2 = \sqrt{3^2 + (2\sqrt{10})^2} = 7$ --- (3)

From (2) $ab = -\sqrt{10}$

and $a = \pm \sqrt{5}$

and $b = \pm \sqrt{5}$

required square roots are $\pm (\sqrt{5} - \sqrt{5}i)$

(b) $|z - 3 - i| \leq 3$ represents the interior of circle centre at $(3 + i)$ and $r = 3$.

$\arg z \geq \frac{\pi}{4}$ represents a half line and its upper arc of

a half line through origin.

$\text{Im} z \geq 2$ is the right side of the line $y = 2$.

$\text{Im} z = 2$ from Argand diagram.
Example 10 (a) Find the complex number \(z \) satisfying the equation
\[
\frac{z + iz}{z^*} - 2 = 0 \quad \text{where } z^* \text{ denotes the complex conjugate of } z.
\]
Give your answer in the form \(x + iy \), where \(x \) and \(y \) are real.

(b) (i) On a single Argand diagram sketch the loci given by the equations \(|z - 2i| = 2 \) and \(\text{Im} z = 3 \), where \(\text{Im} z \) denotes the imaginary part of \(z \).

(ii) In the first quadrant the two loci intersect at the point \(P \). Find the exact argument of the complex number represented by \(P \).

Solution (a) \(z + iz - 2 = 0 \)
\[
\Rightarrow (x + iy) + i(x + iy) - 2 = 0
\]
\[
\frac{x + iy}{x - iy} = 2
\]
\[
(x + iy)(x - iy) + i(x + iy) - 2(x - iy) = 0
\]
\[
x^2 + y^2 + i2xy - y - 2x + iy = 0
\]
\[
\{ x^2 + y^2 - 2x - y = 0 \quad \text{(0)} \}
\]
\[
x + 2y = 0 \quad \text{(2)}
\]

Solve (0) and (2)
\[
(-2y)^2 + y^2 - 2(-2y) - y = 0
\]
\[
y^2 + 3y = 0
\]
\[
y(3y + 3) = 0
\]
\[
y = -\frac{3}{5} \quad \text{or} \quad y = 0
\]
\[
x = \frac{6}{5}
\]
\[
\Rightarrow \text{Required } z = \left(\frac{6}{5} - \frac{3}{5}i \right)
\]

(b(i)) \(|z - 2i| = 2 \) represents a circle with centre at \(2i \) and radius 2.

\[
\begin{align*}
\text{In } \triangle AOB, & \quad \rho B = \sqrt{3}\text{ }\text{and } \frac{\rho Q}{\rho B} = \frac{\sqrt{3}}{2} \\
\rho Q = \rho B = \sqrt{3} & \quad \rho Q = 0 \beta = 3
\end{align*}
\]
\[
\arg P = \frac{\rho Q}{\rho B} = \frac{\sqrt{3}}{2}
\]
\[
= \frac{\sqrt{3}}{\sqrt{3}} = \frac{\pi}{3}
\]
\[
\Rightarrow \arg P = \frac{\pi}{3} \left(60^\circ \right)
\]
Example 11: The complex with modulus 1 and argument $\frac{1}{3} \pi$ is
denoted by w.

(i) Express w in the form $x + iy$, where x and y are real and exact.
The complex number $1 + 2i$ is denoted by u. The
complex number v is such that $|v| = 2|u|$ and
\[\text{arg } v = \text{arg } u + \frac{\pi}{3} \]

(ii) Sketch an Argand diagram showing the points u and v.

(iii) Explain why v can be expressed as $2u$. Hence find v,
giving your answer in the form $a + ib$, where a and b
are real and exact.

\[|u| = 1, \quad \text{arg } w = \frac{1}{3} \pi \]

\[w = \mathbf{z}(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3}) \]

\[w = \frac{1}{2} + \frac{\sqrt{3}}{2} i \quad \Box \]

\[u = 1 + 2i \]

\[|u| = \sqrt{1^2 + 2^2} = \sqrt{5} \]

\[\text{and } \text{arg } u = \tan^{-1} 2 = \tag{2} \]

Now v: \[|v| = 2|u| = 2\sqrt{5} \quad \tag{3} \]

\[\text{and } \text{arg } v = \text{arg } u + \frac{\pi}{3} \quad \tag{4} \]

\[|2uw| = 2|u||w| = 2\sqrt{5} \times 1 = 2\sqrt{5} \quad \tag{5} \]

From (3) & (5), \[|2uw| = |v| \quad \tag{6} \]

Now \[\text{arg } (2uw) = \text{arg } (u) + \text{arg } (2w) \]
\[= \text{arg } u + \text{arg } (1 + \sqrt{3} i) \]
\[= \text{arg } u + \tan^{-1} \sqrt{3} \quad \tag{7} \]

From (4) and (7), \[\text{arg } v = \text{arg } (2uw) \]

\[\vdots \]

\[v = 2uw = 2(1 + 2i)(\frac{1}{2} + \frac{\sqrt{3}}{2} i) \]
\[= (1 - 2\sqrt{3}) + (2 + 3\sqrt{3}) i \]