EXERCISE 1

A – LEVEL: POLYNOMIALS, MODULUS, EXPONENTS, LOGARITHMS

Q1. Solve the inequality $|2x-5| > 3|2x+1|$.

Q2. Using the substitution $u=3^x$, solve the equation, $3^x + 3^{2x} = 3^{3x}$, giving your answer correct to 3 significant figures.

Q3. The polynomial $8x^3 + ax^2 + bx - 1$, where a and b are constants, is denoted by $p(x)$. It is given that $(x+1)$ is a factor of $p(x)$ and that when $p(x)$ is divided by $(2x+1)$, the remainder is 1.

(i) Find the value of a and b.

(ii) When a and b has these values, factorise $p(x)$ completely.

Q4. Solve the equation $\ln(x^2 + 4) = 2\ln x + \ln 4$, giving your answer in an exact form.

Q5. The polynomial $4x^3 + ax + 2$, when x is a constant, is denoted by $p(x)$. It is given that $(2x+1)$ is a factor of $p(x)$.

(i) Find the value of a.

(ii) When a has this value,

(a) Factorise $p(x)$

(b) Solve the inequality $p(x) > 0$, justify your answer.
Q6.
(i) Solve the equation $2|x-1|=3|x|$ \[3\]
(ii) Hence solve the equation $2|5^x-1|=3|5^x|$, giving your answer correct to 3 significant figures. \[2\]
\[S-16/31/Q1\]
Q7. Using logarithms solve the equation $4^{3x-1}=35^x$, giving your answer correct to 3 decimal places. \[4\]
\[S-16/32/Q1\]
Q8. Solve the inequality $2|x-2|>|3x+1|$ \[4\]
Q9. The variable x and y satisfy the relation, $3^y=4^{2-x}$
(i) By taking logarithms, show that the graph of y against x is straight line, state the exact value of the gradient of this line. \[3\]
(ii) Calculate the exact x-coordinate of the point of intersection of this line with the line with equation $y=2x$, simply your answer. \[2\]
\[S-16/33/Q2,Q1\]
Q10. Solve the equation: \[
\frac{3^x + 2}{3^x - 2} = 8
\]
giving your answer correct to 3 decimal places. \[3\]
\[W-16/31/Q1\]
\[/32/\]
Q11. It is given that $z=\ln(y+2)-\ln(y+1)$. Express y in terms of z. \[3\]
Q12. The polynomial $4x^4+ax^2+11x+b$, where a and b are constants, is denoted by $p(x)$. It is given that $p(x)$ is divisible by x^2-x+2.

(i) Find the value of a and b. [5]
(ii) When a and b have these values, find the real roots of the equation $p(x)=0$. [2]

W-16/33/Q1,Q4

Q13. Sketch the graph of $y=e^{ax}-1$, where a is a positive constant. [2]

W-15/33/Q1

Q14. Use logarithms to solve the equation $2^{5x}=3^{2x+1}$, giving your answer correct up to 3 significant figures. [4]

S-15/31/Q1

Q15. Using substitution $u=4^x$, solve equation: $4^x+4^2=4^{x+2}$, giving your answer correct up to 3 significant figures. [4]

S-15/31/Q2

Q16. Solve the equation $\ln(x+4) = 2\ln x + \ln 4$, giving your answer correct to 3 significant figures. [4]

Q17. Solve the inequality $|x-2| > 2x-3$ [4]

S-15/33/Q1,Q2

Q18. It is given that $2\ln (4x-5)+\ln (x+1)= 3\ln 3$

(i) Show that $16x^3-24x^2-15x-2=0$ [3]
(ii) By first using factor theorem, factorise: $16x^3-24x^2-15x-2=0$ completely. [4]
(iii) Hence solve the equation $2\ln(4x-5)+\ln(x+1)=3\ln 3$ [1]

S-14/31/Q6
Q19. Find the set of values of x satisfying the inequality:

$$|x+2a| > 3|x-a|$$

Where a is a positive constant. [4]

Q20. Solve the equation: $2\ln(5-e^{-2x}) = 1$ giving your answer correct to 3 significant figures. [4]

[S-14/32/Q1,Q2]

Q21. Solve the equation $\log_{10}(x+9) = 2 + \log_{10}x$ [3]

[S-14/33/Q1]

Q22. Use logarithms to solve the equation, $e^x = 3^{x-2}$, giving your answer correct to 3 decimal places.

Q23. The polynomial $ax^3 + bx^2 + x + 3$, where a and b are constants, is denoted by $p(x)$. It is given that $(3x+1)$ is a factor of $p(x)$, and that when $p(x)$ is divided by $(x-2)$ the remainder of 21. Find the value of a and b.[5]

[W-14/31/Q1,Q3]

Q24. Solve the inequality, $|3x-1| < |2x+5|$ [4]

Q25. The polynomial $4x^3 + ax^2 + bx - 2$, where a and b are constants, is denoted by $p(x)$. It is given that $(x+1)$ and $(x+2)$ are factors of $p(x)$.

(i) Find the value if a and b. [4]

(ii) When a and b have these values, find the remainder when $p(x)$ is divided by (x^2+1). [3]

[W-14/33/Q1,Q3]
Q26. Solve the equation, $2 |3^x-1|=3^x$, giving your answer correct up to 3 significant figures. [4]

W-13/31/Q2

Q27. Given that $2\ln(x+4)-\ln x = \ln(x+a)$, express x in terms of a. [4]

Q28. The polynomial $f(x)$ is defined by $f(x)=x^3+ax^2-ax+14$, where a is a constant. It is given that $(x+2)$ is a factor of $f(x)$.

(i) Find the value of a. [2]

(ii) Show that, when a has this value, the equation $f(x) = 0$ has only one real root. [3]

W-13/33/Q1,Q3

Q29. Find the quotient and remainder when $2x^2$ is divided by $x+2$. [3]

Q30. (i) Solve the equation $|4x-1|=|x-3|$ [3]

(ii) Hence solve the equation $|4^{y+1}-1|=|4^y-3|$ correct to 3 significant figures. [3]

S-13/31/Q1,Q4

Q31. Solve the equation $|x-2|=\frac{1}{3}|x|$ [3]

Q32. The polynomial ax^3-20x^2+x+3, where a is a constant, is denoted by $p(x)$. It is given that $(3x+1)$ is a factor of $p(x)$.

(i) Find the value of a. [3]

(ii) When a has this value, factorise $p(x)$ completely. [3]

S-13/32/Q1,Q4

Q33. Solve the inequality $|4x+3|>|x|$ [4]
Q34. It is given that \(\ln(y+1) - \ln y = 1 + 3 \ln x \). Express \(y \) in terms of \(x \), in a form not involving logarithms. \([4] \)

Q35. The polynomial \(8x^3 + ax^2 + bx + 3 \), where \(a \) and \(b \) are constants, is denoted by \(p(x) \). It is given that \((2x+1) \) is a factor of \(p(x) \) and that when \(p(x) \) is divided by \((2x-1) \) the remainder is 1.

(i) Find the value of \(a \) and \(b \). \([5] \)

(ii) When \(a \) and \(b \) have these values, find the remainder when \(p(x) \) is divided by \(2x^2 - 1 \). \([3] \)

[S-13/33/Q1,Q2,Q5]

Q36. Solve the equation \(|4-2^x| = 10 \), giving your answer correct to 3 significant figures. \([3] \)

Q37. The polynomial \(p(x) \) is divided by \(p(x) = x^3 - 3ax + 4a \), where \(a \) is constant.

(i) Given that \((x-2) \) is a factor of \(p(x) \), find the value of \(a \). \([2] \)

(ii) When \(a \) has this value,
 a) Factorise \(p(x) \) completely. \([3] \)
 b) Find all the roots of the equation \(p(x^2) = 0 \). \([2] \)

[S-12/31/Q1,Q3]

Q38. Solve the equation \(\ln(3x+4) = 2\ln(x+1) \), giving your answer correct up to 3 significant figures. \([4] \)

[S-12/32/Q1]

Q39. Solve the equation \(\ln(2x+3) = 2\ln x + \ln 3 \), giving your answer correct to 3 significant figures. \([4] \)

[S-12/33/Q2]

Q40. Solve \(3|x-1| < |2x+1| \). \([4] \)
Q41. Solve the equation, \(5^{x-1} = 5^x - 5\), giving your answer correct to 3 significant figures. \[4\]

Q42. Solve the equation: \(\ln(x+5) = 1 + \ln x\), giving your answer in terms of \(e\). \[3\]
ANSWERS

<table>
<thead>
<tr>
<th>Question</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1.</td>
<td>$-2 < x < \frac{1}{4}$</td>
</tr>
<tr>
<td>Q2.</td>
<td>$x = 0.438$ ($u=1.61$)</td>
</tr>
<tr>
<td>Q3. (i)</td>
<td>$a=6$; $b=-3$</td>
</tr>
<tr>
<td>(ii)</td>
<td>$(x+1)(4x+1)(2x-1)$</td>
</tr>
<tr>
<td>Q4.</td>
<td>$x = 2/\sqrt{3}$</td>
</tr>
<tr>
<td>Q5. (i)</td>
<td>$a=3$</td>
</tr>
<tr>
<td>(ii)</td>
<td>(a) $(2x+1)(2x^2 - x + 2)$</td>
</tr>
<tr>
<td>(b)</td>
<td>$x > -1/2$</td>
</tr>
<tr>
<td>Q6. (i)</td>
<td>$x = -2$ and $x = 2/5$</td>
</tr>
<tr>
<td>(ii)</td>
<td>$x = -0.569$</td>
</tr>
<tr>
<td>Q7.</td>
<td>$x = 0.975$</td>
</tr>
<tr>
<td>Q8.</td>
<td>$-5 < x < 3/5$</td>
</tr>
<tr>
<td>Q9. (i)</td>
<td>$-\ln 4 / \ln 3$</td>
</tr>
<tr>
<td>(ii)</td>
<td>$x = \ln 4 / \ln 6$</td>
</tr>
<tr>
<td>Q10.</td>
<td>$x = 0.860$ ($3^x = 18/7$)</td>
</tr>
<tr>
<td>Q11.</td>
<td>$y = \frac{2-e^x}{e^x-1}$ $ (e^z = \frac{y+2}{y+1})$</td>
</tr>
<tr>
<td>Q12. (i)</td>
<td>$a = 1$, $b = -6$</td>
</tr>
<tr>
<td>(ii)</td>
<td>$\frac{1}{2}$; $-3/2$</td>
</tr>
<tr>
<td>Q20.</td>
<td>$x = -0.605$ $ [e^{-2x} = \frac{1}{1-\frac{1}{5-e^{2}}}]$</td>
</tr>
<tr>
<td>Q21.</td>
<td>$x = 1/11$</td>
</tr>
<tr>
<td>Q22.</td>
<td>$x = 22.28$</td>
</tr>
<tr>
<td>Q23.</td>
<td>$a = 12$; $b = -20$</td>
</tr>
<tr>
<td>Q24.</td>
<td>$-4/5 < x < 6$</td>
</tr>
<tr>
<td>Q25. (i)</td>
<td>$a = 11$; $b = 5$</td>
</tr>
<tr>
<td>(ii)</td>
<td>$(x-13)$</td>
</tr>
<tr>
<td>Q26.</td>
<td>0.631 and -0.369</td>
</tr>
<tr>
<td>Q27.</td>
<td>$x = \frac{16}{a-8}$</td>
</tr>
<tr>
<td>Q28. (i)</td>
<td>$a = -1$</td>
</tr>
<tr>
<td>(ii)</td>
<td>$f(x) = (x + 2)(x^2 - 3x + 7)$</td>
</tr>
<tr>
<td>x= -2 is Only one real root</td>
<td>$[as \ b^2 - 4ac = -19 < 0$ No real roots]</td>
</tr>
<tr>
<td>Q29.</td>
<td>Quotient = $(2x - 4)$ and R= 8</td>
</tr>
<tr>
<td>Q30. (i)</td>
<td>$-2/3$ or $4/5$</td>
</tr>
<tr>
<td>(ii)</td>
<td>$y = -0.161$</td>
</tr>
<tr>
<td>Q31.</td>
<td>$x = 3/2$</td>
</tr>
<tr>
<td>Q32. (i)</td>
<td>$a = 12$</td>
</tr>
<tr>
<td>(ii)</td>
<td>$(3x+1)(2x-1)(2x-3)$</td>
</tr>
</tbody>
</table>
Q13.

Q14. \(x = 0.866 \)

Q15. \(x = 0.0466 \) (\(u = 16/15 \))

Q16. \(x = 1.13 \) \[\frac{x+4}{x^2} = 4 \]

Q17. \(x < 5/3 \)

Q18. (ii) \((x - 2)(4x + 1)^2 \)
 (iii) \(x = 2 \)
 [\(x = -1/4 \) not possible as \(\ln(4x - 5) \) will not be defined]

Q19. \(\frac{1}{4} a < x < \frac{5}{2} a \)

Q33. \(x < -1 \) or \(x > -3/5 \)

Q34. \(y = (e^{x^3} - 1)^{-1} \)

Q35. (i) \(a = -10 \); \(b = -1 \)
 (ii) \(R = (3x-2) \)

Q36. 3.81

Q37. (i) \(a = 4 \)
 (ii) \((x - 2)^2(x + 4) \)
 (iii) \(\pm\sqrt{2} \) and \(\pm2i \)

Q38. \(x = 2.30 \) \((x^2 - x - 3 = 0) \)

Q39. \(x = 1.39 \) \((3x^2 - 2x - 3 = 0) \)

Q40. \(2/5 < x < 4 \)

Q41. \(x = 1.14 \) \((5^x = \frac{25}{4}) \)

Q42. \(x = \frac{5}{(e-1)} \)