Mathematics – A Level

P₃

Vectors in 3D

Exercise 1

1. Points A, B, C are such that
$$\vec{OA} = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$$
; $\vec{OB} = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}$; $\vec{OC} = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}$

The plane *m* is perpendicular to AB and contains point C.

(i) Find Vector equation of *AB* line.

(ii) Obtain equation of plane *m*, and give the answer in the form. ax + by + cz = d [2]

(iii) The line <i>AB</i> interest the plane <i>m</i> at a point <i>N</i> . Find the position vector of <i>N</i> and show that				
$CN = \sqrt{13}$.	2017/ SP-3/O7	[5]		

2. Two planes have equations: 3x + y - z = 2 and x - y + 2z = 3

(i) Show that the planes are perpendicular.

(ii) Find the vector equation of the line of intersection of the two planes. [6]

3. The line *l* has vector equation:

$$r = \mathbf{i} + 2\mathbf{j} + \mathbf{k} + \lambda (2\mathbf{i} - \mathbf{j} + \mathbf{k})$$

(i) Find the position vector of two points on the line whose distance from the origin is $\sqrt{10}$.

(ii) The plane *p* has equation:

ax + y + z = 5, where a is constant. The acute angle between the line *l* and the plane p is equal to $\sin^{-1}(2/3)$. Find the possible value of a. [5]

4. The line *l* has equation
$$\mathbf{r} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$$
 and the plane p has equation $\mathbf{r} \cdot \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix} = 6$.

(i) Show that $l \parallel p$.

[2]

[3]

[5]

[3]

W-16/ 31/Q8

W-16/ 32/Q8

(ii) A line m lies in plane p and is perpendicular to *l*. The line m passes through the point with coordinate (5,3,1). Find the vector equation of m. [6]

5. The points A, B, C, D have position vectors:

$$\overrightarrow{OA} = \mathbf{i} + 3\mathbf{j} + 2\mathbf{k}$$
; $\overrightarrow{OB} = 2\mathbf{i} + \mathbf{j} - \mathbf{k}$; $\overrightarrow{OC} = 2\mathbf{i} + 4\mathbf{j} + \mathbf{k}$; $\overrightarrow{OD} = -3\mathbf{i} + \mathbf{j} + 2\mathbf{k}$

(i) Find the equation of plane containing points A, B and C, giving your answer in the form :

$$ax + by + cz = d$$
 [6]

(ii) The line through D parallel to OA meets the plane with equation x + 2y - z = 7 at the point P.

Find the position vector of P and show that the length of DP is $2\sqrt{14}$. **S-16/31/Q9** [5]

6. The point A, B, C have position vectors $\vec{OA} = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$; $\vec{OB} = 4\mathbf{j} + \mathbf{k}$ and

 $\vec{OC} = 2\mathbf{i} + 5\mathbf{j} - \mathbf{k}$. A fourth point D is such that the quadrilateral ABCD is a parallelogram.

(i) Find the position vector of D and verify that the parallelogram is a rhombus. [5]

(ii) The plane p is parallel to OA and the line BC lies in p. Find the equation of p, giving your answer in the form ax + by + cz = d. [5]

7. The points A and B have position vector, $\overrightarrow{OA} = \mathbf{i} + \mathbf{j} + \mathbf{k}$ and $\overrightarrow{OB} = 2\mathbf{i} + 3\mathbf{k}$. The line l has vector equation: $\mathbf{r} = 2\mathbf{i} - 2\mathbf{j} - \mathbf{k} + \mu (-\mathbf{i} + 2\mathbf{j} + \mathbf{k})$

- (i) Show that the line passing through A and B does not intersect *l*.
- (ii) Show that the length of perpendicular from A to l is $1/\sqrt{2}$. S-16/33/Q8

8. The line l_1 passes through the points (0,1,5) and (2,-2,1). The line l_2 has equation:

$$\mathbf{r} = 7\mathbf{i} + \mathbf{j} + \mathbf{k} + \mu (\mathbf{i} + 2\mathbf{j} + 5\mathbf{k})$$

- (i) Show that lines l_1 and l_2 are skew.
- (ii) Find the acute angle between line l_2 and X- axis. S-15/ 31/Q6 [3]

9. The points A and B have position vectors $\overrightarrow{OA} = 2\mathbf{i} - \mathbf{j} + 3\mathbf{k}$ and $\overrightarrow{OB} = \mathbf{i} + \mathbf{j} + 5\mathbf{k}$. The line *l* has equation $\mathbf{r} = \mathbf{i} + \mathbf{j} + 2\mathbf{k} + \lambda (3\mathbf{i} + \mathbf{j} - \mathbf{k})$

(i) Show that *l* does not intersect the line passing through A and B. [5]

[6]

[4]

[5]

[4]

S-15/ 32/Q10

[3]

S-11/ 31/Q3	[4]
-------------	-----

12. A plane has equation 4x - y + 5y = 39. A line is parallel to the vector (i - 3j + 4k) and passes through point A (0, 2, -8). The line meets the plane at the point B

11. Two points A and B have coordinates (-1, 2, 5) and (2, -2, 11) respectively. The plane p

(i) Find the equation of plane p, giving your answer in the form ax + by + cz = d

(ii) Find the equation of plane containing the line *l* and point A. Give your answer in the form.

x + 3y - 2z = 4 and 2x + y + 3y = 5. The planes intersect in the line *l*.

(i) Calculate the acute angle between the two planes.

(ii) Find the vectors equation of the line *l*.

passes through B and is perpendicular to AB :

(i) Find the coordinates of B. [3]

(ii) Find the acute angle between the line and plane.

(ii) Find the acute angle between 'p' and the Y-axis.

(iii) A point C lies on the line and is such that the distance between C and B is twice the distance between A and B. Find the possible coordinates of point C. [3]

13. The line *l* has equation:

ax + by + cz = d

10. Two planes have equation :

 $r = 4\mathbf{i} - 9\mathbf{j} + 9\mathbf{k} + \lambda (-2\mathbf{i} + \mathbf{j} - 2\mathbf{k})$

(i) Show that the length of the perpendicular from A to *l* is 15.

(ii) The line lies in the plane with the equation ax + by - 3z + 1 = 0. Find the values of a and b. [5]

14. The equation of two lines are :

 $\mathbf{r} = \mathbf{i} + 4\mathbf{j} - 2\mathbf{k} + \lambda (\mathbf{i} + 3\mathbf{k})$

 $\mathbf{r} = a\mathbf{i} + 2\mathbf{j} - 2\mathbf{k} + \mu (\mathbf{i} + 2\mathbf{j} + 3a\mathbf{k})$, where a is constant.

(i) Show that lines intersect for all values of a.

(ii) Given that the point of intersection is at a distance of 9 units from the origin, find the values of a. [4]

W-14/ 33/Q7

$$-4i - 2k + \lambda (i + 3k)$$

W-14/ 31/Q10

W-14/ 32/O10

[5]

[4]

[4]

15. The line *l* has equation

$$\mathbf{r} = 4\mathbf{i} - \mathbf{j} + 2\mathbf{k} + \lambda (2\mathbf{i} - 3\mathbf{j} + 6\mathbf{k}),$$

The plane p passes through the point (4, -1, 2) and is perpendicular to l.

(i) Find the equation p in the form ax + by + cz = a. [2]

(ii) Find the perpendicular distance from origin to p.

(iii) A second plane q is parallel to p and the perpendicular distance between p and q is 14 units. Find the possible equations of q. [3]

16. The position vectors of points A, B ard C are: $\overrightarrow{OA} = i + 2j + 3k$; $\overrightarrow{OB} = 2i + 4j + k$ and \rightarrow

$$OC = 3i + 5j - 3k$$

(i) Find the exact value of cos (BAC).

(ii) Hence find the exact value of area of triangle ABC.

(iii) Find the equation of plane which is parallel to the y-axis and contains the line through B and C. Give your answer in the form ax + by + cz = d. [5]

17. The line *l* has equation $\mathbf{r} = \mathbf{i} + 2\mathbf{j} - \mathbf{k} + \lambda (3\mathbf{i} - 2\mathbf{j} + 2\mathbf{k})$ and the plane p has equation: 2x + 3y - 5z = 18

(i) Find the position vector of the point of intersection of <i>l</i> and p.	[3]
--	-----

(ii) Find the acute angle between *l* and p.

(iii) A second plane q is perpendicular to the plane p and contains the line *l*. find the equation of q, give your answer in the form ax + by + cz = d. **S-14/33/O10**[5]

18. The points A and B have position vectors $2\mathbf{i} - 3\mathbf{j} + 2\mathbf{k}$ and $5\mathbf{i} - 2\mathbf{j} + \mathbf{k}$ respectively. The plane p has equation x + y = 5

(i) Find the position vector of the point of intersection of the line through A and B and plane p. [4]

(ii) A second plane q has an equation of the form x + by + cz = d. The plane q contains the line AB, and the acute angle between the planes p and q is 60°. Find the equation of q. [7]

S-13/ 32/Q10

[3]

[4]

[4]

[3]

19. Given points
$$\vec{OA} = \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$$
; $\vec{OB} = \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix}$; $\vec{OC} = \begin{pmatrix} 3 \\ 0 \\ 4 \end{pmatrix}$

The point D lies on BC, and is such that CD = 2DB.

C

(ii) Find the position vector of D.

(iii) Show that the length of perpendicular from A to OD is
$$\frac{1}{3}\sqrt{65}$$
. **W-13/32/Q9** [4]

20. Two planes have equations 3x - y + 2z = 9 and x + y - 4z = -1

(i) Find the acute angle between the planes.

(ii) Find a vector equation of the line of intersection of the planes.

21. Given Points P and Q, $\overrightarrow{OP} = 7i + 7j - 5k$ and $\overrightarrow{OQ} = -5i + j + k$. The midpoint of PQ is point A. The plane π is perpendicular to the line PQ and passes through A.

(i) Find the equation of π , giving answer, in the form ax + by + cz = d. [4]

(ii) The straight line through P parallel to the X- axis, meets π at the point B. Find the distance AB. [5]

22. The line *l* has equation : $\mathbf{r} = (\mathbf{i} + \mathbf{j} + \mathbf{k}) + \lambda (\mathbf{a}\mathbf{i} + 2\mathbf{j} + \mathbf{k})$, where a is a constant. The plane p has equation x + 2y + 2z = 6. Find the value or values of a in each of the following cases.

5

[1]

[3]

[6]

W-13/33/Q6

[2]

[5]

[4]

(i) The line *l* is parallel to plane p.

(ii) The line *l* intersects the line passing through the points with position vectors $3\mathbf{i} + 2\mathbf{j} + \mathbf{k}$ and $\mathbf{i} + \mathbf{j} - \mathbf{k}$. [4]

23. The point P has coordinates (-1, 4, 11) and the line *l* has equation. $\mathbf{r} = \begin{pmatrix} 1 \\ 3 \\ -4 \end{pmatrix} + \lambda \begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix}$

(i) Find the perpendicular distance from P to *l*.

(iii) The acute angle between the line l and plane p is $\tan^{-1}2$.

(ii) Find the equation of the plane which contains P and l, give your answer in the form ax + by + cz = d. [5] S-12/ 31/Q8

24. Two planes m and n have equations : x + 2y - 2z = 1 and 2x - 2y + z = 7 respectively. The line *l* has equation $\mathbf{r} = (\mathbf{i} + \mathbf{j} - \mathbf{k}) + \lambda (2\mathbf{i} + \mathbf{j} + 2\mathbf{k})$

(i) Show that *l* is parallel to m.

(ii) Find the position vector of the point of intersection of *l* and n.

(iii) A point P lies on *l* is such that its perpendicular distances from m and n are equal. Find the position vectors of two possible positions for P and calculate the distance between them. [6]

25. The lines l and m have equations. $\mathbf{r} = (3\mathbf{i} - 2\mathbf{j} + \mathbf{k}) + \lambda (-\mathbf{i} + 2\mathbf{j} + \mathbf{k})$ and $\mathbf{r} = (4\mathbf{i} + 4\mathbf{j} + 2\mathbf{k}) + \lambda (-\mathbf{i} + 2\mathbf{j} + \mathbf{k})$ μ (ai + bj - k), where a and b are constants.

- (i) Given *l* and m intersect, show that 2a b = 4.
- (ii) Given *l* and m are perpendicular. Find the values of a and b.
- (iii) when a and b have these values find the point of intersection of *l* and m.

26. The A, B, C are such that:
$$\vec{OA} = \begin{pmatrix} 3 \\ -2 \\ 4 \end{pmatrix}$$
; $\vec{OB} = \begin{pmatrix} 2 \\ -1 \\ 7 \end{pmatrix}$; $\vec{OC} = \begin{pmatrix} 1 \\ -5 \\ -3 \end{pmatrix}$

The plane m is parallel to \vec{OC} and contains A and B.

- (i) Find the equation of m, give your answer in the form ax + by + cz = d
- (ii) Find the length of the perpendicular from C to the line through A and B.

S-13/33/O10

[6] [5]

[4]

[2]

It is given that lines intersect.

(i) Find the values of p and the coordinates of the points of intersection.

(ii) Find the equation of the plane containing the two lines, giving your answer in the form ax + by + cz = d where a, b, c and d are the integers. W-12/ 33/Q8

28. Given lines l_1 and l_2 :

and $l_2: r = (4i + 6j + k) + t (2i + 2j + k)$ $l_1: r = (i + j + k) + s (i - j + 2k)$

(i) Prove that l_1 and l_2 are coplanar.

(ii) find the equation of plane containing l_1 and l_2 .

29. The plane p has equation 2x - 3y + 6z = 16. The plane q is parallel to p and contains the point with position vector $(\mathbf{i} + 4\mathbf{j} + 2\mathbf{k})$

(i) Find the equation of q, giving your answer in the form ax + by + cz = d[2]

(ii) Calculate the perpendicular distance between p and q. [3]

(iii) The line *l* is parallel to plane p and also parallel to the plane with equation x - 2y + 2z = 5. Given *l* passes through origin find the vector equation of *l*. [5]

(iv) Find the distance between the planes:

$$2x - 3y + 6z = 16$$

$$4x - 6y + 12z + 4 = 0$$
[3]

30. Find the equation of the plane passing through the intersection of the planes 2x + 3y - z + 1 = 0 and x + y - 2z + 3 = 0 and

(i) perpendicular to the plane 3x - y - 2z - 4 = 0. [5]

(ii) passing through a point (1, -2, 3). [4]

[5]

[5]

[5]

P₃

	Vectors in 3D		Exercise 1 Answer Sheet
1.	(i) $\mathbf{r} = \mathbf{i} + 2\mathbf{j} + \lambda (2\mathbf{i} - 2\mathbf{j} + \mathbf{k})$ (ii) $2x - 2y + z = 4$ (iii) $\overrightarrow{ON} = \frac{7}{3}\mathbf{i} + \frac{2}{3}\mathbf{j} + \frac{2}{3}\mathbf{k}$ and $CN = \sqrt{13}$	8.	(i) $l_1: \mathbf{r} = (2\lambda, 1-3\lambda, 5-4\lambda)$ $l_2: \mathbf{r} = (7 + \mu, 1 + 2\mu, 1 + 5\mu)$ Show (a) line l_1 and l_2 are not parallel. (b) Equate the respective component- solve two equations for λ and $\mu \Rightarrow \lambda = 2$ and $\mu = -3$ but these values does not satisfy the third equation. (ii) $\theta = 79.5^\circ$ or 1.39 radian
2.	(i) Show that a scalar product of normal vector is zero. (ii) $\mathbf{r} = 7\mathbf{i} + 5\mathbf{k} + \lambda (\mathbf{i} - 7\mathbf{j} - 4\mathbf{k})$ Or = $(\mathbf{i} + \mathbf{k}) + \lambda (-\mathbf{i} + 7\mathbf{j} + 4\mathbf{k})$	9	(i) line AB; $\mathbf{r} = 2\mathbf{i} - \mathbf{j} + 3\mathbf{k} + \mu$ (- $\mathbf{i} + 2\mathbf{j}+2\mathbf{k}$) Line <i>l</i> ; $\mathbf{r} = \mathbf{i} + \mathbf{j} + 2\mathbf{k} + \lambda$ ($3\mathbf{i} + \mathbf{j} - \mathbf{k}$) Equate the respective component of AB and <i>l</i> . Solve first two equations to get $\lambda = 0$; $\mu = 1$ but these values does not satisfy the third equation (ii) $x + 4y + 7z = 19$
3.	(i) $-\mathbf{i} + 3\mathbf{j}$ and $\frac{7}{3}\mathbf{i} + \frac{4}{3}\mathbf{j} + \frac{5}{3}\mathbf{k}$ (ii) $\mathbf{a} = \pm 2$	10.	(i) Angle between the two planes is the angle between their normal. $\theta = 85.9^{\circ}$ or 1.50 radian (ii) $\mathbf{r} = 2\mathbf{j} + \mathbf{k} + \lambda$ (11 \mathbf{i} - 7 \mathbf{j} - 5 \mathbf{k})
4.	(i) Show $l \perp$ Normal or $\begin{pmatrix} 2 \\ 1 \\ 3 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -1 \\ -1 \end{pmatrix} = 0$ (ii) $\mathbf{r} = 5\mathbf{i} + 3\mathbf{j} + \mathbf{k} + \mu (\mathbf{i} + 4\mathbf{j} - 2\mathbf{k})$	11.	(i) $3x - 4y + 6z = 80$ (ii) 30.8°
5.	(i) $5x - 2y + 3z = 5$ (ii) $\overrightarrow{OP} = (-\mathbf{i} + 7\mathbf{j} + 6\mathbf{k})$	12.	(i) (3, -7, 4) (ii) 54.8° or 0.956 radian (iii) (-3, 11, -20) ; (9, -25, 28)
6.	$\overrightarrow{OA} = 3\mathbf{i} + 3\mathbf{j} + \mathbf{k}$ and verify adjacent sides AB = BC. (ii) $-7x + 8y - 3z = 29$	13.	(i) 15 (ii) $a = 2, b = -2$
7.	(i) equation of line AB: $\mathbf{r} = (\mathbf{i} + \mathbf{j} + \mathbf{k}) + \lambda (\mathbf{i} - \mathbf{j} + 2\mathbf{k})$ Equate the respective components of line AB and line <i>l</i> . Solve first two equations, $\lambda = -1, \mu = 2$ but these values does not satisfy the third equation. (ii) $\frac{1}{\sqrt{2}}$	14.	 (i) Equate the components of points on both the lines: Solve first two; satisfy the third λ = a, μ = 1 (ii) a =3 and -2

15.	(i) $2x - 3y + 6z = 23$	25.	(i) $2a - b = 4$
	(ii) distance = $23/7$		(ii) $a = 3$; $b = 2$
	(iii) $2x - 3y + 6z = 121$ or $2x - 3y + 6z = -75$		(iii) $(\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$
16.	(i) Coc (BAC) = 20	26.	(i) $3x + z = 13$
	(1) $\cos \angle BAC = \frac{1}{21}$		(ii) $3\sqrt{2}$ (4.24)
	(11) Area of triangle = $-\sqrt{41}$		
	(iii) $4x + z = 9$		
17.	(i) $(-1i + 3i - 2k)$	27.	(i) $p = 9$; (7, -1, 2)
	$(1)(-\frac{1}{2}+3)(-2\mathbf{k})$		(ii) $11x - 10y - 7z = 73$
	(ii) 23.2° (or 0.404 radian)		
	(iii) $4x + 19y + 13z = 29$		
18.		28.	(i) Intersect for $s = -1$ and $t = -2$
	(1) $\frac{1}{2}$ I + - $\frac{1}{2}$ J + $\frac{1}{2}$ K		(ii) $-5x + 3y + 4z = 2$
	(ii) $x - 4y - z = 12$		
19.	(i) $3x + y - 2z = 1$	29.	(i) $2x - 3y + 6z = 2$
	\overrightarrow{O} \overrightarrow{O} \overrightarrow{O} \overrightarrow{I} \overrightarrow{I} \overrightarrow{I}		(ii) 2
	(ii) $OD = \mathbf{I} + 2\mathbf{j} + 2\mathbf{k}$		(iii) $\mathbf{r} = \lambda (-6\mathbf{i} - 2\mathbf{j} + \mathbf{k})$
			(iv) 18/7
20.	(i) 68.7° (or 1.18 radian)	30.	(i) $7x + 13y + 4z = 9$
	(ii) $r = (2i - 3j) + \lambda (i + 7j + 2k)$ or		x + 3y + 4z = 7
	$\boldsymbol{r} = (-17\mathbf{j} - 4\mathbf{k}) + \lambda (\mathbf{i} + 7\mathbf{j} + 2\mathbf{k})$		
21.	(i) $2x + y - z = 8$		
	(ii) B (-2, 7, -5) and $AB = 5.20$		
22.	(i) $a = -6$		
	(ii) a = 4		
	(111) $a = 0$ and $a = \frac{60}{31}$		
23.	(i) $\sqrt{104}$ or 10.2		
	(ii) $3x - 9y + z = -28$		
24.	(i) Show $l \perp$ normal to m.		
	(ii) $5\mathbf{i} + 3\mathbf{j} + 3\mathbf{k}$		
	(iii) $\overrightarrow{OP} = (7\mathbf{i} + 4\mathbf{j} + 5\mathbf{k})$ and		
	$\vec{OP'} = (3\mathbf{i} + 2\mathbf{j} + \mathbf{k})$		
	Required distance $PP' = 6$		