Pure Math. 1

Coordinate Geometry
Circles
Exercise

S. C. Goel
(former director)
Alliance World School
Noida, Delhi, NCR
India
1. A diameter of a circle C_1 has end points at $(-3, 5)$ and $(7, 3)$.
 (a) Find an equation of the circle C_1.
 The circle C_1 is translated by $(8, 4)$ to give circle C_2, as shown in the diagram.
 (b) Find an equation of the circle C_2.
 The two circles intersect at points R and S.
 (c) Show that the equation of the line RS is $y = -2x + 13$.
 (d) Hence show that the x-coordinates of R and S satisfy the equation $5x^2 - 60x + 159 = 0$.
 $\Rightarrow 17 - 20/12/0/0$

2. The coordinates of the points A and B are $(-1, -2)$ and $(7, 4)$ respectively.
 (a) Find the equation of circle C, for which AB is a diameter.
 (b) Find the equation of tangent, T, to circle C at the point B.
 (c) Find the equation of the circle which is the reflection of circle C in the line T.
 $\Rightarrow 5-10/1/1/0/0$

3. The equation of a circle with centre C is $x^2 + y^2 - 8x + 4y - 5 = 0$.
 (a) Find the radius of the circle and the coordinates of C.
 The point $P(1, 2)$ lies on the circle.
 (b) Show that the equation of the tangent to the circle at P is $4y = 3x + 5$.
 The point Q also lies on the circle and PQ is parallel to the x-axis.
 (c) Write down the coordinates of Q.
 The tangent to the circle at P and Q meet at T.
 (d) Find the coordinates of T.
 $\Rightarrow 5-10/12/1/1/0/1/0$
4. (a) The coordinates of two points A and B are (-7,3) and (5, -1) respectively. Show that the equation of the perpendicular bisector of AB is \(3x + 2y = 11 \).

(b) A circle passes through A and B and its centre lies on the line \(12x - 5y = 70 \). Find the equation of the circle.

5. Find the coordinates of the middle point of the chord which the circle \(x^2 + y^2 + 4x - 2y - 3 = 0 \) cuts off on the line \(x - y + 2 = 0 \).

6. Prove that the line \(x + y = 5 \) touches the circle \(x^2 + y^2 - 2x - 4y + 3 = 0 \). Find the point of contact.

7. Find the equation of a circle with radius 5, whose centre lies on the x-axis and passes through the point (2, 3).
Coordinate Geometry (Circles)

Exercise

1. (a) Centre \((-\frac{3+7}{2}, -\frac{5+3}{2})\) = \((2, -1)\)
 \[x^2 = [2 - (-3)]^2 + \left(-1 - (-5)\right)^2 = 41\]
 Equation of circle \((x-2)^2 + (y+1)^2 = 41\) \(\checkmark\)

 (b) Centre of Circle \(C_2\),
 \((2, -1) + \left(\frac{8}{4}\right) = (10, 3)\)
 some radius \(r^2 = 41\)
 Equation of circle \(C_2\)
 \((x-10)^2 + (y-3)^2 = 41\) \(\checkmark\)

(C) RS is the line of intersection of
 Circle (1) and (2)
 \((3, 1)\)
 RS and \(C_2\)
 \(s\)
 at \(M\)
 \(M\) is the midpoint of \(RS\) and \(C_2\)
 \(M(2 + \frac{10}{2}, -\frac{1+3}{2}) = (6, 1)\)
 gradient of \(C_1C_2\) = \(\frac{3+1}{10-2} = \frac{1}{2}\)
 gradient of \(RS\) = \(-2\)
 Equation of line \(RS\)
 \[y - 1 = -2(x-6)\]
 \[y = -2x + 13\] \(\checkmark\)

(d) \(R\) and \(S\) are the intersection of \(\checkmark\)
 \((x-10)^2 + (-2x + 13 - 3)^2 = 41\)
 \[x^2 - 20x + 100 + 4x^2 - 4x + 100 = 41\]
 \[5x^2 - 20x + 159 = 0\] \(\checkmark\)

1. (a) Centre \((-\frac{1+7}{2}, -\frac{2+4}{2}) = (3, 1)\)
 \[r = \sqrt{(3+1)^2 + (1+2)^2} = 5\]
 Equation of circle \((x-3)^2 + (y-1)^2 = 25\) \(\checkmark\)

(b) Tangent \(T\) at \(B\).

 \(T \perp BC\)

 \((3, 1)\)
 \((7, 4)\)
 \[y = -\frac{4}{3}(x - 7)\]
 \[3y + 40 = 0\]

(C) \(B\) is the midpoint of \(RS\) and \(C_2\)

\(C_2\) \((11, 7)\)
 \(\text{Radius} = 5\)

New circle \(E\) \(x^2 + y^2 = 8x + 4y - 5 = 0\)
 3(a) \(x^2 + y^2 = 8x + 4y - 5 = 0\)
 \[2a = 8, 2b = 4, c = -5\]
 Centre \((-2, -2)\) \(\checkmark\)
 \[x = \sqrt{a^2 + b^2} = \sqrt{8 + 4} = 5\]

(b) \((1, 2), C(4, -2)\)
 \(\text{Grad of } PC = -\frac{3}{2}\)
 \(\text{Grad of tangent } PT = 3\)
 \(E\) \(\text{tangent } PT\)
 \[y - 2 = \frac{3}{2}(x-1) = 4y = 3x + 5\) \(\checkmark\)

(C) \(y^2 + y^2 = 8x + 4y - 5 = 0\)
 \(\text{On circle } D\) and \(y > a\)
 \[a = \sqrt{x^2 + y^2 - 8x + 4y - 5} = 0\]
 \[x^2 - 8x + 17 = 0\]
 \[x = 1, y\]
 Point on \(P(1, 2), Q(7, 2)\)
 \(\text{Grad of } CQ = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2}{2} = 1\)
 \(y - 2 = 2(x - 7)\)

(d) \(\text{Grad of } TQ = \frac{1}{2}\)
 \(\text{Grad of } TQ\) \(\checkmark\)
4. Mid point of \(AB \), \(M(-1, 2) \)
 \((a) \) Gradient of \(AB = \frac{5}{2} \)
 \[\Rightarrow \text{Grad. of } AB = \frac{-1}{3} \]
 i. Eqn. of perpendicular bisector of \(AB \)
 \[y = -\frac{1}{3}(x+1) \]
 \[\Rightarrow 3x + 2y = 11 \]
 \((b) \) Centre lies on line \(12x - 5y = 40 \)
 and centre also lies on the perpendicular bisector of chord \(AB \) of required circle

6. Given line \(x + y = 5 \) or \(y = (5-x) \)
 Circle \(x^2 + y^2 - 2x - 4y + 3 = 0 \)
 Solving \(D \) \& \(D' \)
 \[x^2 + (5-x)^2 - 2x - 4(5-x) + 3 = 0 \]
 \[\Rightarrow x = \frac{2}{5} \]
 from \(D \) \[y = 5 - x = 3 \]
 i. Line \(O \) intersects circle \(G \) at exactly one point \((2, 3) \), hence is tangent. Point \(G \), contact \((2, 3) \)

7. Curve lies on \(x \)-axis, let \(x = 0 \)
 Centre \(C(0, 0) \)
 Passes through \(A(2, 3) \)
 \[\text{Eqn. of circle} \]
 \[(x-2)^2 + (y-3)^2 = 25 \]
 \[\Rightarrow (x-2)^2 + (0-3)^2 = 25 \]
 \[\Rightarrow a = 6 \text{ or } -2 \]
 Curve \(G(6, 6) \) or \(C(-2, 0) \)
 \[a = 5 \]

6. Centre \(C(-2, 1) \)
 Eqn. of chord \(AB \)
 \[x + y + 3 = 0 \]
 \[\text{Grad. of chord } AB = 1 \]
 Grad. of perpendicular to \(CM \)
 \[\text{Chord } = -1 \]
 From curve \(G \)
 Eqn. of chord \(CM \)
 \[y - 1 = -1(x+2) \]
 \[\Rightarrow x + y + 1 = 0 \]
 Solve \(D \) \& \(D' \)
 \[M(-\frac{3}{2}, -\frac{7}{2}) \]